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Abstract: Many computational models assume that reinforcement learning relies on changes in synaptic
efficacy between cortical regions representing stimuli and striatal regions involved in response selection,
but this assumption has thus far lacked empirical support in humans. We recorded hemodynamic signals
with fMRI while participants navigated a virtual maze to find hidden rewards. We fitted a reinforcement-
learning algorithm to participants’ choice behavior and evaluated the neural activity and the changes in
functional connectivity related to trial-by-trial learning variables. Activity in the posterior putamen dur-
ing choice periods increased progressively during learning. Furthermore, the functional connections
between the sensorimotor cortex and the posterior putamen strengthened progressively as participants
learned the task. These changes in corticostriatal connectivity differentiated participants who learned the
task from those who did not. These findings provide a direct link between changes in corticostriatal con-
nectivity and learning, thereby supporting a central assumption common to several computational mod-
els of reinforcement learning. Hum Brain Mapp 36:793–803, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Computational models form the backbone of our current
theoretical understanding of reinforcement learning (RL)
in humans and other animals [Glimcher, 2011; Maia and
Frank, 2011]. Computational RL models come in two basic
flavors that parallel two types of learning that have long
been acknowledged in psychology: model-free approaches
based on stimulus-response (S-R) learning and model-
based approaches akin to planning. Humans and other
animals likely implement both types of learning [Daw
et al., 2005].

The precise neural instantiation of model-based RL
remains unknown despite important recent advances in
this area [Balleine and O’Doherty, 2010; Daw et al., 2011].
The neural instantiation of model-free, S-R learning, in
contrast, is better understood. Several RL models suggest
that S-R learning depends on plasticity in corticostriatal
synapses [Barto, 1995; Frank, 2005; Maia, 2009]—more spe-
cifically, on changes in the synaptic connections between
sensory cortical regions that represent stimuli or situations
and the putamen in humans and other primates or its
homologue in rodents, the dorsolateral striatum [Balleine
and O’Doherty, 2010; Yin and Knowlton, 2006]. The mod-
els predict that these changes in corticostriatal synapses in
the motor cortico-basal ganglia-thalamo-cortical (CBGTC)
loop depend on phasic dopaminergic firing [Maia, 2009],
consistent with converging evidence from empirical work
in non-human animals [Centonze et al., 2001; Charpier
and Deniau, 1997; Pawlak and Kerr, 2008]. Because rapid
changes in synaptic efficacy accompany learning-related
plasticity [Xu et al., 2009], learning likely modifies the
functional coupling between presynaptic and postsynaptic
neurons—a phenomenon that can be studied using

functional-connectivity tools in fMRI. Some fMRI studies

have indeed used RL models to assess changes in neural

connectivity during decision making following a learning

phase [Wunderlich et al., 2012] or during specific phases

of learning, although not as a function of changes in learn-

ing signals [van den Bos et al., 2012]. Other studies have

instead focused on interindividual differences in structural

connections in relation to habitual tendencies [de Wit

et al., 2012]. Finally, few fMRI studies have used RL mod-

els to specifically assess changes in striatal connectivity as

participants learn the relational association between pairs

of stimuli (S-S learning) [den Ouden et al., 2010; den

Ouden et al., 2009; Wimmer et al., 2012], but none have

assessed such changes as a function of S-R learning or

other forms of RL.
We used fMRI based on computational modeling (i.e.,

computational fMRI) [O’Doherty et al., 2007] to study
changes in corticostriatal connectivity as human partici-
pants performed a task analogous to the “win-stay” ver-
sion of a radial-arm maze task [Packard et al., 1989;
Packard and Knowlton, 2002]. Participants were instructed
to find hidden monetary rewards by navigating a virtual-

reality eight-arm radial maze (Fig. 1). They had to learn to
enter lit maze arms, which contained a reward at the end
of the arm. Prior work in rodents has shown that forming
an association between the light and the response of enter-
ing the lit arm on this version of the task is insensitive to
outcome devaluation and, therefore, relies on S-R learning
[Sage and Knowlton, 2000], which is mediated by the dor-
solateral striatum [McDonald and White, 1993; Packard
et al., 1989]. Building on this prior work, we hypothesized
that human learning of this putative S-R association would
be accompanied—indeed, driven—by two main changes at
the neural level: (1) an increase in functional connectivity
between sensory cortices and the putamen, reflecting the
strengthening of the S-R association, and (2) an increase in
activity in the putamen, reflecting the increasing engage-
ment of the habit system (driven by the increased connec-
tivity between the sensory representation of the light and
the representation of the response in the putamen).

MATERIALS AND METHODS

Participants

The participants in this study were 55 healthy individu-
als, aged 14–59 years (mean 6 s.d., 27 6 10 years; 41
females), who had no history of neurological illness or
any lifetime Axis I psychiatric disorder. The study was
approved by the Institutional Review Board of the New
York State Psychiatric Institute and the Department of Psy-
chiatry of Columbia University.

Behavioral Paradigm

Virtual environments were generated with C11 and
OpenGL. The virtual environments consisted of an eight-
arm radial maze with a central starting location and a low
outer-perimeter wall. The maze was surrounded by a nat-
uralistic landscape. Prior to scanning, participants under-
went a training session on a desktop computer to practice
using a joystick to navigate freely about a virtual maze
that was similar in appearance to the maze used during
scanning. During scanning, stimuli were presented
through nonmagnetic goggles (Resonance Technology,
refresh rate 5 60 Hz), and participants used an MRI-
compatible joystick (Current Designs, Inc.) to navigate the
maze. Before entering the scanner, participants were told
that they would find themselves in the center of a virtual
maze with eight identical runways extending outwards
and that hidden rewards ($) would be available at the end
of some runways. Participants were instructed to find the
rewards; they were unaware that they would not be given
actual monetary rewards for their performance but rather
paid a fixed amount for their participation at the end of
the study. In a first session, participants executed a
spatial-learning version of the task in which they had to
learn to use fixed extra-maze cues to navigate and earn
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the rewards. The details of that version of the task are
reported elsewhere [Marsh et al., 2010] and will not be
described here. Participants were then presented with the
message, “New Experiment! Find the $$.” This signaled
the beginning of the “win-stay” task. In this task, four
arms were illuminated (lit) and the other four were not.
Each lit arm was baited with two rewards. Participants
obtained rewards (feedback in the form of a dollar sign,
presented for 1 s) after they reached the end of a lit arm,
although they were never told where the rewards were
located or that multiple rewards were present at the same
location. The illumination of a lit arm ceased upon receipt
of the second reward located at the end of that arm. Each
trial began at the center platform and ended when the par-
ticipant reached the end of an arm. After reaching the end
of an arm, participants reappeared automatically in the
middle of the center platform to initiate a new trial, with
the initial viewing perspective determined randomly. The
run terminated when the participant found all eight hid-
den rewards (i.e., run duration depended on each partici-
pant’s performance but in all cases involved eight visits to

lit arms) or after 5 min elapsed. Self-timing and other task
features were chosen to maximize comparability with the
rodent version of the task. Extra-maze cues were pseudo-
randomly interchanged at the end of each trial, thereby
precluding use of a spatial strategy to find the rewards.
Rather, finding rewards in this task requires an S-R strat-
egy in which participants have to learn the association
between the light stimulus and the response of entering,
based on their history of reinforcements.

Behavioral Analyses and RL Model

We reconstructed each participant’s trajectory and orien-
tation on the virtual maze. We considered that every sight-
ing of an arm elicited a choice about whether or not to
enter that arm. We recorded entering choices directly and
a nonentering choice whenever an arm was viewed by the
participant but the participant did not enter that arm (Sup-
porting Information). We then fitted a Q-learning model to
each participant’s choice behavior. Q-learning [Watkins

Figure 1.

The virtual-reality maze task. (a) Screen captures of the partici-

pant’s view when traversing a lit arm and when arriving at the

end of the arm. (b) Aerial view of the virtual maze (not seen by

participants) showing a reconstructed trajectory of a simulated

participant along the maze (dark blue) and the points along the

trajectory when the participant was facing the entrance to each

of the eight arms (in different colors). (c) Detail of (b). Rota-

tions without displacement appear as portions of multicolor pin-

wheels, the differing colored arms of which represent the

sighting of different arms as viewed from the participant’s posi-

tion at the center of the pinwheel.
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and Dayan, 1992] involves learning the value Q(s, a) of an
action (or response) a in a state s. In our case, the relevant
states were the facing of a lit or an unlit arm, and the rele-
vant actions were entering or not entering that arm. We
used standard Q-learning rules to update Q based on the
prediction errors d elicited by the presentation of the out-
come (reward or no reward at the end of the arm;
Supporting Information).

We tested several RL model variants (Supporting Infor-
mation). A first version (double-a model) had separate
learning rates (a1 and a2) for positive and negative pre-
diction errors, thereby allowing learning to differ for
reward versus no-reward outcomes [Frank et al., 2007]. A
second version (single-a model) had a single learning rate
(a) for both positive and negative prediction errors. A
third version (zero-a1 model) explicitly assumed that no
learning to enter lit arms could occur (a1 5 0). By compar-
ing the fit to this zero-a1 model with the fit to the double-
a model on a participant-by-participant basis, we deter-
mined which participants exhibited any evidence for learn-
ing to enter lit arms (i.e., which participants showed more
evidence for learning than for no learning given their
behavioral data). To do so, we compared models using a
goodness-of-fit index penalized by model complexity,
namely the Akaike information criterion (AIC), and
selected the best-fitting model as that with the minimum
AIC value for a given participant (see Supporting Informa-
tion for a detailed description).

Image Acquisition

Images were acquired on a GE Signa 3T LX scanner
(Milwaukee, WI) with a standard quadrature head coil,
using a T2*-sensitive gradient-recalled, single-shot, echo-
planar pulse sequence with TR 5 2800 ms, TE 5 25 ms, flip
angle 5 90�, single excitation per image, FOV 5 24 cm 3

24 cm, 64 3 64 matrix, 43 slices 3 mm thick, no gap.

Image Analysis

Individual-level analyses were carried out with SPM8
using a General Linear Model (GLM) with a weighted
least-squares algorithm, following standard preprocessing
steps (Supporting Information). One participant was
excluded from the imaging analyses due to extreme head
motion in the scanner. Each choice and outcome period
was modeled separately as an independent regressor in a
GLM. Choice periods (from the beginning of a trial until
the participant traversed 10% of the length of an arm, for
consistency with the animal literature) were modeled as
boxcar functions with length equal to the duration of the
corresponding period. Outcome periods (arrival at the end
of an arm) were modeled as impulse functions (0 ms), as
prediction error signals at outcome are phasic signals with
a relatively negligible duration of a few hundred millisec-
onds [Schultz et al., 1997]. The boxcar and impulse func-

tions were then convolved with a canonical double-
gamma hemodynamic response function [Friston et al.,
1998]. The resulting series of choice and outcome beta
maps from this model, which represent the magnitude of
activation during each choice and outcome period, respec-
tively, were Z-normalized and treated as the dependent
variables in additional first-level GLMs, using a beta-series
analysis described next.

Individual-level, beta-series analysis

of learning-related changes in activation

We focused our analyses on lit arms because we were
interested specifically in the neural correlates of establish-
ing and strengthening of S-R associations, and because, for
consistency with the rodent version of the task, partici-
pants were simply instructed to find rewards (and not to
avoid unrewarded arms). Our design, in fact, would be
less suited to study the weakening of S-R associations, for
two reasons. First, although such weakening did occur for
some participants who clearly learned to avoid unlit arms,
the instruction to earn all rewards regardless of visits to
unlit arms did not stress speed, and therefore, no explicit
incentive was present to learn to avoid unlit arms. Partici-
pants thus had a very variable number of visits to unlit
arms. Second, the number of visits to unlit arms correlated
(inversely) with learning speed, thereby confounding
learning and the number of data points available for anal-
ysis. We, therefore, restricted our analyses to the d signals
that occurred at the end of lit arms (during outcome peri-
ods), henceforward simply referred to as PEs, and to the
Q values of entering lit arms (during choice periods),
henceforward simply referred to as Q. Note that modeling
of Q and PE signals as events occurring at separate times
within a trial (choice vs. feedback periods, respectively)
circumvents their tendency to correlate (negatively) at the
trial level given the mathematics of RL (see eq. 1 in Sup-
porting Information). To identify the neural correlates of
Q, we analyzed the beta-map series corresponding to
choice periods that terminated when participants chose to
enter a lit arm. We built two GLMs—Q-GLM and PE-
GLM—each of which contained a model-derived signal (Q
and PE, respectively) matched to the corresponding trial
period (choice- or outcome-related beta-map series as the
dependent variable, respectively) and a global intercept.
As a control analysis, we also used an extended Q-GLM
model that included linear effects of time at each choice
period as a nuisance regressor.

Individual-level, psychophysiological interaction
analysis of learning-related changes in connectivity

To test the hypothesis that corticostriatal connections
strengthened as participants acquired the S-R association,
we assessed whether whole-brain functional connectivity
with the functionally defined striatal region-of-interest
(ROI) that encoded Q changed as a function of learning.
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To account for interindividual differences in brain loci
engaged with learning, we extracted functional time
courses (i.e., the beta-map series corresponding to choice
periods) from participant-specific seeds (ROIs). To select
these seeds, we searched for participant-specific maxima
related to the effect of interest (Q effect) within a cluster
that had positive findings for that effect at the group level,
and that fell within the corresponding anatomical ROI of
the putamen according to the AAL atlas in the PickAtlas
toolbox [Maldjian et al., 2003]. To analyze changes in the
connectivity of voxels throughout the brain with each par-
ticipant’s seed during learning, we generated a separate
GLM model identical to Q-GLM (above) but with the
addition of two regressors: one that corresponded to the
seed timecourse and an interaction term calculated by
multiplying the seed timecourse by the model-derived Q
values. The regression coefficient (beta) map associated
with the interaction term represented changes in func-
tional connectivity between each voxel and the seed as a
function of learning.

Group-level analyses

We applied a second-level Bayesian analysis to detect a
group random effect by estimating the posterior probabil-
ity that the effect exists based on the observed data [Klein
et al., 2007; Neumann and Lohmann, 2003]. This approach
to second-level analysis does not require adjustment for
multiple comparisons because it has no false positives and
does not depend on whether the analysis is performed on
a single voxel or the entire brain [Neumann and Lohmann,
2003]. To reduce the number of statistical tests and based
on our strong a priori hypothesis that the learning signals
of interest would be represented in the striatum, we none-
theless limited our search space for the analysis of
learning-related changes in activation to striatal voxels, as
defined by the AAL atlas.

To ensure interpretability and comparability of Q signals
between learners and nonlearners, we first estimated a Q-
GLM for each participant in which Q represented the
average Q time series in learners (calculated using the
average a in this group), rather than the participant-
specific Q time series, and then compared the resulting
beta maps across groups. We chose this approach, analo-
gous to that used in prior work [Schonberg et al., 2007],
because Q time series in nonlearners by definition show
no systematic changes (in the case of no learning, the PE
time series would equal obtained outcomes and the Q
series would be constant), and therefore, the betas associ-
ated with Q in this group are uninterpretable. Individual
betas associated with the average-learner Q time series,
conversely, can be interpreted as indicating how strongly
neural signals relate to a canonical time series that
represents average learning. For the same reason, we also
based psychophysiological interaction (PPI) comparisons
between the groups on a GLM that used the Q time series.
We considered voxelwise findings as significant whenever

posterior probability (PP)� 0.95, which can be considered
equivalent to a corrected P-value of 0.05. Post hoc, ROI-
based brain-behavior correlations within regions with sig-
nificant effects of learning (i.e., within striatal voxels) used
an uncorrected threshold of P 5 0.01 (P 5 0.05 for explora-
tory analyses).

RESULTS

Behavioral Analyses and Model Fit

Participants learned to enter lit arms over the course of
the experiment (Figs. 2 and 3a). They made an average of
14 choices of whether or not to enter a lit arm during
the scan run (s.d. 6.77; mean run duration 6 s.d., 117.03 6

78.68 s). The percentage of entering choices increased in
the second half of lit-arm choices relative to the first half
(t54 5 26.25, P 5 6 3 1028, paired t-test), and the time to
obtain the last four rewards (out of the total of eight) was
shorter than the time to obtain the first four rewards
(t54 5 2.03, P 5 0.0466, paired t-test). None of these effects
were significantly associated with age (Ps> 0.05).

Figure 2.

Examples of behavior and model-derived predictions for a par-

ticipant who learned the task (a) and one who did not (b). The

top row depicts actual and model-predicted probability of enter-

ing a lit arm at its sighting (smoothed with a five-point moving

average). The bottom row represents the model predictions

concerning values and prediction errors for the same partici-

pants (magnitude in a.u.). Participant (a) learns the value of lit

arms (Q increases and PEs decrease throughout the task) and

learns to enter those arms. Participant (b) shows no evidence of

learning, as evidenced by constant PEs and Q and by the fact

that the participant continues to enter lit arms less than 50% of

the time throughout the task (note that only part of the run is

shown for this participant for clarity of display). These partici-

pants were classified as learner (a) and nonlearner (b), respec-

tively, by our classification algorithm (Materials and Methods).

See Supporting Information for an example computation of Q

values based on the model-fitting procedure.
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To determine the best fitting of the RL model variants,
we first compared the fit of each model variant to the
behavioral data using the AIC (Supporting Information
Table S1). The best-fitting model was the one that treated
the absence of reward at the end of unlit arms as a nega-
tive outcome (coded as 21) rather than as a neutral out-
come (coded as 0) and that allowed for different learning
rates for positive and negative outcomes (the double-a
model), consistent with prior demonstrations that these
two types of learning depend on dissociable basal ganglia
pathways [Frank et al., 2007; Maia and Frank, 2011]. Par-
ticipants likely treated the absence of reward as a negative
outcome because they learned to expect rewards during
the task or generalized some of the positive value associ-
ated with lit arms to unlit arms. In either of those cases,
the absence of reward at the end of unlit arms would elicit
a negative prediction error. Such coding of neutral out-
comes relative to overall task expectations has been previ-
ously demonstrated [O’Doherty et al., 2003]. Even though
our dataset contained fewer data points than those in typi-
cal model-based studies, a parameter-recovery analysis
showed that the results of our model-fitting procedure
were robust (Supporting Information Fig. S1).

Changes in Neural Activity Associated

With Learning

Activation in ventral and anteromedial portions of the
striatum (nucleus accumbens and caudate head, respec-
tively) in the whole group (n 5 54) correlated positively
with PEs during outcome periods (PP� 0.95; Fig. 3b and
Supporting Information Fig. S2), replicating previous fMRI
studies [Maia, 2009; Pessiglione et al., 2006]. We found Q
signals during choice periods in ventral anteromedial
regions of the striatum, not only partially overlapping
regions that encoded PEs but also in a posterolateral por-
tion of the putamen (PP� 0.95; Fig. 3c and Supporting
Information Fig. S3). These effects were independent of
age (Ps> 0.05).

To interpret the neural correlates of Q more confidently
in terms of learning, we divided participants into learners
and nonlearners based on their behavioral performance
(Materials and Methods). Our procedure classified 15
(27.8%) participants as learners and 39 (72.2%) as non-
learners. Learners and nonlearners were comparable on
sociodemographic characteristics (mean age: 30.6 vs. 26.9;
females: 43.7% vs. 43.6%; full-scale IQ: 111.9 vs. 110.8,

Figure 3.

Behavioral and imaging findings for all participants (n 5 54). (a)

Percentage of entering choices for lit arms (top) and time to

obtain the rewards (bottom) in the first and second half of the

run. Error bars represent s.e.m. Asterisks indicate statistically

significant effects at P< 0.05. The dashed line indicates chance-

level performance. (b) Prediction error signal during outcome

periods (hot colors) within the striatum in the ventral striatum

and anteromedial caudate (caudate head). Three-dimensoinal

template of the striatum (semi-transparent gray). (c) Q signal

during choice periods (hot colors) in the ventral and anterome-

dial regions of the striatum and left posterolateral putamen

(green arrow). Maps are thresholded at posterior probability

(PP)� 0.95. Supporting Information Figs. S2 and S3 present

whole-brain results for the PE and Q signals, respectively.
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respectively; Ps> 0.5) and motion (cumulative motion and
motion peaks, Ps> 0.3) but had marked differences in
behavioral indices of learning independent from the model
(Fig. 4a). Whereas learners clearly performed better than
chance in the second half of the run, nonlearners contin-
ued to perform at chance level (Wilcoxon signed-rank test:
learners P 5 3 3 1026; nonlearners P 5 0.061). Furthermore,
model-derived and model-independent learning indices
correlated highly with one another (DQ with percentage of
entering choices in the second half: Spearman’s q 5 0.92,
P 5 9 3 10220).

Next, we analyzed Q correlations with striatal BOLD
signal during choice periods in the 15 learners and found
that only a region in the left posterolateral putamen
showed increased activation with increasing values of Q
(Fig. 4b). This region overlapped with the region in the
putamen that showed Q signals in the entire sample (Fig.
3c). The supplementary motor area (SMA) and premotor
cortex (within Brodmann area 6) also displayed Q signals
in learners. Using a more lenient threshold (P 5 0.01,
uncorrected), we also identified Q signals in learners in
the contralateral posterolateral putamen, but not in other

regions of the striatum. All of these neural Q effects in
learners persisted after controlling for linear time effects.
In contrast, our analyses in the 39 nonlearners found no
evidence of progressive activation in cortical or striatal
motor regions—either tracking a linear function of time or
an average-learner Q time series—supporting the interpre-
tation that the neural Q effect in learners represents learn-
ing and not another, unspecific process. The direct
comparison of Q effects in learners versus nonlearners
revealed that learners had stronger Q signals in the right
posterolateral putamen (Fig. 4c), as well as in other regions
within the striatum (anteromedial and posterolateral cau-
date). Furthermore, post hoc exploratory analyses using a
lenient threshold of uncorrected P 5 0.05 showed that par-
ticipants who demonstrated the most learning had stron-
ger correlations with Q in the posterolateral putamen
(t52 5 2.40, P 5 0.043, uncorrected, MNI coordinates [x,y,z]:
33, 216, 25 mm, in the whole group), even when the anal-
ysis was restricted to learners (conjointly significant group
effect and correlation with participants’ DQ, within learn-
ers, t13 5 2.40, P 5 0.016, uncorrected, [x, y, z]: 33, 222,
1 mm). Even though the latter set of results are simply

Figure 4.

Behavioral and imaging findings in learners versus nonlearners.

(a) Model-derived (top) and model-independent (bottom) differ-

ences in behavior between learners and nonlearners among the

second half of lit-arm choices. Error bars denote s.e.m. Aster-

isks indicate P< 0.05. The mean percentage of “entering”

choices (6s.d.) was 92.08% 6 11.15% in learners and

55.99% 6 16.29% in nonlearners (t53 5 8.09, P 5 7 3 10212). (b)

Striatal Q effect during choice periods in the left posterolateral

putamen in learners only (n 5 15; peak MNI coordinates [x,y,z]:

233, 215, 22 mm). Map thresholded at PP� 0.95. (c) Q effect

in learners versus nonlearners in the right posterolateral puta-

men (MNI coordinates [x,y,z]: 33, 222, 22 mm, t52 5 1.68,

P 5 0.048).
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presented as support for our interpretation of the group
differences in Q signals in terms of learning, note that
these exploratory brain-behavior analyses used a lenient
statistical threshold and thus need to be interpreted with
caution. Finally, the group comparison revealed that acti-
vation in limbic and paralimbic regions, including the hip-
pocampus, decreased progressively in learners, an effect
that was absent in nonlearners (Supporting Information
Fig. S4).

Changes in Neural Connectivity Associated

With Learning

Having determined that the posterolateral putamen
tracks the Q value of entering lit arms in learners, we next
examined changes in the functional connectivity of this
region associated with learning. To do so, we computed
the PPI [Friston et al., 1997] of the psychometric estimate
Q by the physiological activation during choice in a seed
point placed within the posterolateral putamen. By
regressing this PPI term against whole-brain activation
maps, we identified regions in which coupling with the
posterolateral putamen changed as a function of Q (i.e.,
regions where functional connectivity with the posterolat-
eral putamen changed with learning). Consistent with the
organization of CBGTC loops [Draganski et al., 2008;
Haber et al., 2000; Lehericy et al., 2004; Postuma and
Dagher, 2006] and predictions from RL models, in learn-
ers, the premotor-motor, somatosensory, visual, and supe-
rior parietal cortices increased their connectivity with the
posterolateral putamen as participants learned (Fig. 5a and
Supporting Information Fig. S5). These learning-related
changes in connectivity were specific to the posterolateral

putamen, as they were not present for the ventral striatum
(Supporting Information Fig. S6). Conversely, multiple
regions within the limbic CBGTC loop—including the
anteromedial ventral striatum, ventromedial prefrontal
cortex, mediodorsal thalamus, and amygdala-
hippocampus—as well as the midbrain decreased their
connectivity with the posterolateral putamen with learning
(Fig. 5a). As connections within the sensorimotor CBGTC
loop strengthened with learning, the connections between
the limbic and sensorimotor CBGTC loops weakened with
learning. Indeed, whereas in learners the ventral anterome-
dial striatum was functionally connected with the postero-
lateral putamen in the first half of the experiment (mean
r 5 0.615, P 5 0.003), such connectivity disappeared in the
second half of the experiment (P 5 0.1), although this dif-
ference was nonsignificant. Most of the changes in connec-
tivity with the posterolateral putamen that we identified in
learners differed significantly from those in nonlearners
(Fig. 5b), suggesting that the changes in putaminal cou-
pling in learners likely represented a learning-related pro-
cess rather than nonspecific changes in connectivity.

Functional Anatomy of Corticostriatal

Connections

Finally, we examined whether intrinsic connectivity
between motor cortices and the putamen was mediated by
the basal-ganglia output pathways through their influence
on the thalamus, or whether these functional connections
instead represented direct corticostriatal projections (Sup-
porting Information). (We use the term “intrinsic con-
nectivity” to refer to learning-unrelated connectivity
throughout the task, as opposed to the learning-related

Figure 5.

Learning-related changes in connectivity with the posterolateral

putamen (Q 3 posterolateral putamen PPI). (a) PPI map in

learners. (b) Difference map for the PPI between learners and

nonlearners. (c) Path diagram of intrinsic connections between

the putamen and the premotor cortex-SMA (SMA) via the thala-

mus supporting a full mediation effect in learners (path coeffi-

cients are shown [s.e. in parenthesis]; a: P 5 1026, b: P 5 0.001,

putamen-SMA path c: P 5 0.04, ab-controlled putamen-SMA path

c0: P 5 0.8, ab: P 5 4 3 1027, bootstrap test). C: caudate; M1:

motor cortex; mdTh: mediodorsal thalamus; PO: parieto-

occipital region; SMA: supplementary motor area; TP: temporal

pole; vmPFC: ventromedial prefrontal cortex. Note that spatial

smoothing with a Gaussian kernel (full-width-at-half-

maximum 5 2 mm) was applied to reduce edge effects for visu-

alization purposes. Supporting information Fig. S5 presents

whole-brain axial sections of the nonsmoothed difference map

for PPI between learners and nonlearners.
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connectivity assessed in PPI analyses; see the Supporting
Information.) A mediation analysis [Wager et al., 2009]
based on the choice-related activations within the postero-
lateral putamen, premotor cortex-SMA, and lateral thala-
mus ROIs in learners showed that the thalamus fully
mediated the functional connections between putamen
and premotor cortex-SMA (Zab 5 4.61, P 5 4 3 1027, boot-
strap test; Fig. 5c). This finding, consistent with the
CBGTC anatomy, suggests that response execution in this
task depends on striato-thalamo-cortical pathways.

DISCUSSION

Using computational fMRI, we found that activation in
the posterolateral putamen (along with other brain
regions) tracks the strength of a putative S-R association
on a trial-by-trial basis. Consistent with the known anat-
omy of the CBGTC sensorimotor loop [Draganski et al.,
2008; Haber et al., 2000; Lehericy et al., 2004], we found
that the posterolateral putamen is selectively connected to
the premotor cortex-SMA, lateral thalamus, and sensory
cortex. Critically, we showed for the first time that cortico-
striatal connections between sensorimotor areas and the
posterolateral putamen (but not between sensorimotor
areas and ventral striatum) strengthened as individuals
learned the task based on reinforcement history, support-
ing a central assumption of RL models [Frank, 2005; Maia,
2009]. Finally, the thalamus mediated intrinsic connections
between the posterolateral putamen and cortical motor
areas, implicating the striato-thalamo-cortical pathway in
response execution.

The fMRI paradigm used in the present study is directly
analogous to the radial-arm maze task that was used origi-
nally to identify a specific role for the dorsolateral striatum
(equivalent to the putamen in primates) in the formation
of S-R associations in rodents [McDonald and Hong, 2004;
Packard, 1999; Packard et al., 1989]. Our approach allowed
us to uncover within-session changes in putaminal activa-
tion and connectivity among learners that occurred within
a span of a few minutes. Despite the limitations discussed
below, we suspect that our finding of progressive putami-
nal engagement reflects the formation of S-R associations
rather than other types of associations. Previous human
studies linked the posterolateral putamen [Knowlton et al.,
1996] to habit formation, showing that putaminal activa-
tion at the onset of task blocks increased over the course
of each training day and across days of training [Tricomi
et al., 2009], and to valuation following extensive training
[Wunderlich et al., 2012]. We instead focused on rapidly
acquired associations that likely represent an early phase
of habit learning. Our findings, together with those prior
ones, suggest that the role of the posterior putamen begins
at, but is not restricted to, the early phases of S-R learning.

We found that only learners modified their behavior to
act optimally in response to lit arms and encoded the
value (Q) of entering those arms in the putamen during

learning. PE signals in the dorsal striatum have previously
been shown to differ between those individuals who learn
to select an optimal action versus those who do not
[Schonberg et al., 2007]. Action selection, however, does
not rely directly on PEs, but rather on value signals (see
Supporting Information eq. 3). Our findings, therefore,
more directly link learning to choose an action to the rep-
resentations that are hypothesized to support such choice.
More generally, our findings support the parallels between
the dorsal striatum and the “actor” in the actor-critic
model of action selection [Barto, 1995; O’Doherty et al.,
2004]. This model proposes that the current state (i.e., the
current situation or stimuli) is represented in cortex and
that the basal ganglia implements two computational mod-
ules: the critic, which learns the values of states, and the
actor, which learns and stores S-R associations [Barto,
1995; Maia, 2009; Maia and Frank, 2011]. Central to this
model, the strength of an S-R association, which corre-
sponds to the preference for (or value of) a given action in
a given state, is assumed to be stored in the synaptic
weights—the connections—between state units in the cor-
tex and action units in the striatum, an assumption that
finds strong support in our connectivity findings.

We also observed a progressive disengagement of the lim-
bic circuit and a decoupling of this circuit from the sensori-
motor circuit as individuals learned, compatible with a shift
from an evaluative to a habitual mode of behavior. This
interaction between corticostriatal circuits, possibly instanti-
ated via the spiraling striato-nigro-striatal connections
[Haber et al., 2000], might represent an active process driv-
ing the dynamic transition toward habitual responding.
This shift in control from the limbic to the sensorimotor cir-
cuit, which we observed here at a relatively short timescale,
is hypothesized to play a crucial role in the establishment of
pathological habits, such as those involved in drug addic-
tion, at longer timescales [Belin et al., 2009].

An alternative or complementary explanation for the
progressive decoupling of limbic areas—particularly the
ventromedial prefrontal cortex—from the putamen with
learning is that, early in training, values might be commu-
nicated by the putamen to the ventromedial prefrontal cor-
tex, which, possibly together with other areas in the limbic
loop, might compare the values stored in the putamen-
based habit system with those of a forward-planning,
model-based system [Wunderlich et al., 2012]. With habit
strengthening, the model-based system might tend to dis-
engage, and values represented in the putamen might
directly affect behavior, with less need for mediation by
the ventromedial prefrontal cortex.

A somewhat surprising finding in our study was the rel-
atively large percentage of subjects who failed to learn the
task. Prior to performing this task, all participants per-
formed a similar but spatially based version of the task
[Marsh et al., 2010]. We suspect that participants who
failed to learn the present version of the task persisted in
using a spatial strategy that precluded them from adopt-
ing the S-R strategy required in the present version of the

r Corticostriatal Connectivity During Learning r

r 801 r



task. Although we did not collect subjective reports
regarding strategy use that would directly support this
interpretation, the stronger deactivation of the medial tem-
poral lobe in learners than in nonlearners during training
(Supporting Information Fig. S4) and data suggesting that
continued use of a spatial strategy impaired performance
on the win-stay task (Supporting Information) do provide
some support for this interpretation. Furthermore, the exis-
tence of a substantial percentage of both learners and non-
learners is actually an advantage of the present
experiment, as it allowed us to more firmly establish the
involvement of the patterns of activity and of changes in
connectivity that we identified in learning.

Another limitation of our experimental design is that we
did not include experimental manipulations such as out-
come devaluation that would allow us to more firmly
establish that participants’ learning was based on S-R asso-
ciations and not on alternative representations (e.g.,
situation-action-outcome or stimulus-outcome associa-
tions). The relevance of our findings remains even if one
interprets them more broadly in terms of an unspecified
RL mechanism rather than specifically in terms of S-R
learning. Nonetheless, the known involvement of the pos-
terolateral putamen and its homologue region in rodents
(the dorsolateral striatum) in S-R learning [McDonald and
Hong, 2004; Packard et al., 1989], as well as the remarkable
fit between our findings and the predictions of “model-
free RL” [Daw et al., 2005] models such as the actor-critic
(which work by S-R learning), provide some support our
interpretation in terms of S-R learning. Furthermore, early
learning on the win-stay task in rats is insensitive to out-
come devaluations, suggesting that performance on this
task does rely on S-R learning (even from early stages of
learning) [Sage and Knowlton, 2000]. Finally, independent
manipulation of actions and rewards in a recent study
revealed anticipatory signals in the putamen that represent
action and not state value [Guitart-Masip et al., 2011].
Nonetheless, we acknowledge that our findings may repre-
sent forms of RL other than S-R learning, including
stimulus-outcome and stimulus-response-outcome learn-
ing, a possibility that warrants further examination with
additional experimental manipulations.

Our analyses are obviously limited by the information
that can be obtained in fMRI. We interpreted changes in
functional connectivity as a systems-level index of short-
term synaptic plasticity, but we cannot exclude other
explanations for such changes, such as the emergence of
synchronous oscillatory activity. However, synaptic plas-
ticity may control synchronous oscillatory activity [Paik
and Glaser, 2010], suggesting that both phenomena may
not even be independent. Lastly, our striatum-focused
analyses of learning signals have limitations common to
any ROI study. In particular, our results regarding PE and
Q signals in the striatum do not imply that these signals
are not also represented elsewhere in the brain. In fact, we
observed that other brain regions also represented these
learning signals (Supporting Information Figs. S2 and S3).

CONCLUSION

In summary, our findings suggest a direct link between
strengthening of corticostriatal connections within the sen-
sorimotor circuit and learning of S-R associations in
humans. In addition, our results suggest that habit learn-
ing involves a disengagement of the limbic loop and a
reduction in its influence over the sensorimotor loop, with
control transitioning to the latter. This transition had pre-
viously been hypothesized to underlie the formation of
pathological habits [Belin et al., 2009], which brings sub-
stantial translational potential to this work.
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