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Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and
cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working
memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using
functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radio-
tracer [ 11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain
networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between
task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant
networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity
between left and right frontoparietal networks (� connectivity lFPN-rFPN) predicted interindividual differences in task performance
more accurately than other fMRI and PET imaging measures. � Connectivity lFPN-rFPN was not related to cortical dopamine release
capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but
showed a weaker relationship between � connectivity lFPN-rFPN and working memory performance in patients compared with matched
healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our
findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic
adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-
induced dopamine release capacity.
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Introduction
Complex cognitive processes are thought to arise from orches-
trated communication at the level of brain networks. Research in

the last decade has uncovered an intrinsic organization of the
brain into functional networks that operate partly in parallel dur-
ing rest and are thought to interact during complex cognitive
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Significance statement

It is unclear how communication between brain networks responds to changing environmental demands during complex cogni-
tive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether
their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain net-
works changes with working-memory load and greater increases predict better working memory performance; however, it was not
related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity;
however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our
findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to
goal-directed behavior.
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processes such as working memory (Fox et al., 2005; Linden,
2007; Parnaudeau et al., 2013; Shen et al., 2015), an interaction
that may afford maintenance and manipulation of perceptual
information toward goal-directed behavior. These recent ad-
vances are beginning to elucidate cognition at a systems level, yet
it remains largely unknown how brain networks interact to adapt
to changing cognitive demands such as increased working-
memory load. Understanding these mechanisms could provide
insight into the basis of interindividual differences in working
memory performance, often unexplained or unreported in stud-
ies using conventional fMRI measures (Balsters et al., 2013;
Saliasi et al., 2014), and clarify the perplexing nature of working
memory deficits in schizophrenia (Lee and Park, 2005).

Functional-connectivity networks are sets of spatially distrib-
uted brain regions with temporally coordinated activity (Damoi-
seaux et al., 2006) that can be ascertained with multivariate
analyses of fMRI, such as independent component analysis
(ICA). Some activate during cognitive tasks, dubbed “task-
positive” or “control” networks, including the frontoparietal net-
work (FPN) and the cingulo-opercular network (CON; or
“salience” network), whereas others such as the default-mode
network (DMN) activate at rest and deactivate during various
tasks (“task-negative” networks; Fox et al., 2005). Functional
connectivity is often studied during resting state as an unchang-
ing feature that remains stationary throughout an MRI scan (re-
ferred to as static, intrinsic, or task-independent connectivity;
Damoiseaux et al., 2006). In contrast to resting-state studies,
task-based studies provide a built-in structure allowing the inves-
tigation of variability in functional connectivity in relation to
controlled task demands, a type of dynamic- or task-dependent
connectivity (Rasetti et al., 2011; Hutchison et al., 2013; Bray et
al., 2015). Here, we used an established working-memory para-
digm, the n-back task, to investigate interactions of brain net-
works that may represent systems-level adjustments to varying
working-memory loads.

Dopamine is a key neuromodulator that may influence inter-
actions between brain networks relevant for cognition. Cortical
dopamine plays an important role in working memory (Sawagu-
chi and Goldman-Rakic, 1991; Cools and D’Esposito, 2011; Slif-
stein et al., 2015), where it promotes stability of working memory
networks by increasing their signal-to-noise ratio (Rolls et al.,
2008), which may in turn modulate functional connectivity in the
context of working memory (Sambataro et al., 2009). Manipula-
tions that increase (Kelly et al., 2009; Cole et al., 2013) or decrease
(Nagano-Saito et al., 2008) dopamine signaling have indeed been
shown to alter functional connectivity between individual brain
regions. The only study evaluating the role of dopamine on con-
nectivity between networks found that dopamine synthesis ca-
pacity in the midbrain correlated positively with functional
connectivity between the FPN and DMN at rest (Dang et al.,
2012); however, the role of cortical dopamine in modulating
systems-level interactions across brain networks subserving hu-
man cognition has not been studied.

The main objective of the current work was to test whether
interactions between brain networks play a significant role in
adaptive cognitive processes and whether these network interac-

tions depend on cortical dopamine release capacity as measured
by [ 11C]FLB457 PET combined with the amphetamine paradigm
(Slifstein et al., 2015; Study 1). After defining functional connec-
tivity networks using spatial ICA on BOLD activity, we investi-
gated changes in connectivity between pairs of task-relevant
networks as a function of working-memory load (henceforth re-
ferred to as load-dependent connectivity). Our primary hypoth-
eses were that: (1) with increasing working memory load, the
connectivity between task-positive networks would increase,
whereas the connectivity between task-positive and DMN would
decrease; (2) this load-dependent internetwork connectivity
would predict interindividual differences in task performance;
and (3) would correlate with cortical dopamine release capacity.
Study 2 evaluated the relevance of load-dependent internetwork
connectivity to neuropsychiatric illness, by investigating its rela-
tionship to task performance and clinical severity in unmedicated
patients with schizophrenia.

Materials and Methods
Study 1 (healthy individuals)
Participants
Forty-three healthy individuals (19 male) participated in this study,
which was approved by the Institutional Review Boards of the New York
State Psychiatric Institute (NYSPI) and the Yale University Human In-
vestigation Committee. This study was part of a larger investigation in-
cluding PET and fMRI. Although the PET data have been previously
published, (Slifstein et al., 2015), none of the n-back fMRI data have been
published, nor have the relationships between the two sets of measures.
All participants provided written informed consent and were recruited
through advertisements. Inclusion criteria were as follows: absence of
any current or past DSM-IV Axis-I diagnosis (determined by an abbre-
viated version of the Structured Clinical Interview for DSM-IV Axis I
disorders; First et al., 1995), and no family history (first-degree) of psy-
chotic illness. Exclusion criteria were as follows: significant medical and
neurological illnesses, current misuse of substances other than nicotine,
positive urine drug screen, pregnancy, and nursing. For information on
participant characteristics see Table 1.

Some participants were excluded postscanning based on the quality of
their data. To ensure all participants retained in analysis performed the
behavioral task as instructed, participants were excluded if their perfor-
mance on the less challenging (1-back) condition was not significantly
above chance ( p � 0.05; single-subject binomial test); one participant
was excluded due to this criterion. Three additional participants were
excluded due to poor fMRI data quality (see fMRI preprocessing); leav-
ing a sample of 39 participants (18 male) with usable fMRI data, of which
15 also had usable PET data. Participant and parental socioeconomic
status were calculated according to the Hollingshead scale (Hollingshead,
1975); handedness was measured with the Edinburgh Handedness In-
ventory (Oldfield, 1971).

Task procedures
The n-back working-memory task tests the ability to recognize repeti-
tions in a series of consecutively presented stimuli. The working-memory
load of the task is varied by increasing the interval at which repetitions
must be identified. We used a 1-back condition in which participants
must identify if each stimulus matches the one immediately preceding it
and a more challenging 2-back condition in which participants must
identify if each stimulus matches the one preceding it by 2 stimuli. Our
version of the task (Fig. 1A) used visual stimuli consisting of simple line
drawings of 3D objects (the same stimuli have been used previously in
different tasks (Curtis et al., 2000; Van Snellenberg et al., 2015) and
two-alternative forced-choice responses whereby participants pressed
one key in a two-button response device to identify targets and the other
key to identify nontargets (the left vs right button were pressed to identify
targets vs nontargets in a counterbalanced order across participants).

Each participant performed eight blocks of the 1-back condition and
eight blocks of the 2-back condition with each block comprising 10 stim-
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uli (9 trials for 1-back, 8 trials for 2-back). Each stimulus presentation
lasted 2 s and was followed by 2 s during which a fixation cross appeared
before the next stimulus presentation. Task performance was calculated
using adjusted hit rate (AHR; the percentage of properly identified tar-
gets corrected for false-positives) as described previously (MacMillan,
2005; Abi-Dargham et al., 2012). This metric ranges from a maximum
possible score of 1 for perfect performance to �1 if all true targets are
missed and all non-targets are incorrectly identified as targets. Conven-
tional indices of performance on an n-back task include accuracy, d�, and
AHR (MacMillan, 2005). These can be used as absolute measures of
performance on one condition or differential performance between con-
ditions (2-back performance � 1-back performance). AHR is commonly
used to index n-back performance (Abi-Dargham et al., 2012; Narendran
et al., 2012; Slifstein et al., 2015; Terán-Pérez et al., 2012) and we selected
AHR during the 2-back condition as our primary measure of interest.
This measure was highly correlated with the other five performance mea-
sures (differential measures of AHR, accuracy, and d�, as well as absolute
measures of accuracy and d�; Pearson r values ranged from 0.55 to 0.96).
Because the n-back is a signal detection task with a built-in working-
memory burden we preferred a measure derived from signal detection
theory, such as d� or AHR. Of those two, although 2-back d� is commonly
used and has been shown to have maximal sensitivity to detect working-
memory deficits in schizophrenia (Haatveit et al., 2010), we preferred to
use AHR since this measure does not transform the signal and noise
measures, a transformation that may not be desirable as it can introduce
a bias favoring aggressive strategies. The two measures are nonetheless

similar and were very highly correlated (Pearson r between the 2 mea-
sures � 0.96). Furthermore, we preferred an absolute over a differential
measure of performance because differential measures are not able to
accurately measure change in performance from 1-back to 2-back in the
case of participants who are not performing well above chance in the less
challenging, 1-back, condition. We have previously used the absolute
AHR measure of working memory performance in the n-back for these
reasons (Abi-Dargham et al., 2012; Slifstein et al., 2015). Nonetheless, to
ensure the findings were generalizable across measures, we also examined
another widely used measure, differential accuracy (2-back � 1-back)
operationalized as percentage correct responses on the 2-back minus
percentage correct responses on the 1-back; the performance measure
that differed most from 2-back AHR quantitatively and qualitatively.

fMRI methods
fMRI data acquisition. Imaging was performed on a Philips 1.5 T Intera
scanner at the Columbia Radiology MRI Center at the Neurological In-
stitute of New York. T1-weighted images were obtained with a spoiled
gradient recalled sequence (field-of-view � 256 mm, 200 slices, 1 mm
isotropic voxels). Whole-brain functional echo-planar images (EPIs)
were obtained using an 8-channel SENSE coil (SENSE factor of 1.5, TR �
2 s, TE � 28 ms, flip angle � 77°, field-of-view � 192 mm, 40 slices, 3 mm
isotropic voxels). Participants completed four runs of 145 volumes, each
of which included four 40 s blocks (2 blocks of 1-back and 2 of 2-back),
for a total scanning time of 19 min and 20 s. Twenty-six seconds of rest
occurred between blocks, for 6 s of which task instructions were pre-

Table 1. Demographic, behavioral, and clinical measures

All healthy controls,
N � 39

Matched healthy
controls, N � 23

Patients with
schizophrenia, N � 15

p value all healthy
controls-schizophrenia

p value matched healthy
controls-schizophrenia

Male gender 18 (46%) 11 (48%) 8 (53%) 0.43 1.0
Age � SD 33.5 � 8.2 36.0 � 8.3 35.1 � 11.0 0.56 0.79
Parental SES 42.5 � 14.5 43.8 � 12.8 42.1 � 14.7 0.93 0.73
African American 14 (36%) 12 (52%) 8 (53%) 0.20 1.0
Right-handed 38 (97%) 22 (96%) 13 (87%) 0.18 0.55
Removed fMRI volumes 59.2 � 76.2 84.5 � 89.5 95.2 � 74.6 0.12 0.70
2-back AHR 0.77 � 0.20 0.66 � 0.20 0.60 � 0.20 0.010 0.41
Differential accuracy (2-back � 1-back) �0.08 � 0.10 �0.12 � 0.12 �0.12 � 0.09 0.24 0.89
Positive symptoms (SAPS global total score) — — 4.6 � 2.8 — —
Negative symptoms (SANS global total score) — — 8.1 � 5.1 — —
Duration of illness (years) — — 16.8 � 11.2 — —
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Figure 1. A, Structure of the n-back task. Participants must identify matching stimuli presented in succession (1-back condition) or separated by an intervening stimulus (2-back condition). Ten
stimuli were presented per block and there were 8 blocks of each condition. Stimuli are represented in the figure at a disproportionate scale and did not extend to the periphery of the screen. B,
Schematic of the fMRI analysis pipeline. Each stage of the fMRI analysis is depicted together with the number of elements of fMRI data produced at that stage. The first two steps of analysis included
healthy participants and schizophrenia patients together; all later stages of analysis were performed in the two groups separately. C, Schematic illustrating load-dependent internetwork connec-
tivity. The black line represents a hypothetical pair of networks that has high load-independent connectivity (has high connectivity of �0.5 points at both the 1-back and 2-back conditions) but
near-zero load-dependent connectivity (no change in connectivity from the 1-back to the 2-back condition). The gray line represents a different hypothetical pair of networks showing high
load-dependent connectivity (an increase in connectivity of �0.2 points between the 1-back and the 2-back conditions) but lower load-independent connectivity than the black pair.
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sented. Behavioral responses were registered with a trackball response
device.

fMRI preprocessing. Standard preprocessing procedures were imple-
mented using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) and custom
scripts in MATLAB 2013b. Slice-timing correction was implemented
using SPM8 and motion realignment using INRIAlign (Freire et al.,
2002). T1 and EPI images were then manually realigned to provide better
starting estimates for coregistration. Six-parameter affine coregistration
was used to coregister the functional runs to each other and to the indi-
vidual participants’ T1 image, and participants’ T1 images and all func-
tional images were then coregistered to the International Consortium for
Brain Mapping template. Next, T1 structural images were segmented
into three tissue compartments and the spatial normalization parameters
from the segmentation algorithm were applied to the coregistered T1 and
all EPI images. EPI images were then smoothed using an 8 mm 3 full-
width-at-half-maximum Gaussian kernel. In keeping with recent guide-
lines for functional connectivity analysis (Power et al., 2012), we next
removed volumes (“scrubbed”) by eliminating those showing excessive
motion or signal spikes [framewise displacement and DVARS thresholds
were based on the median plus 2 interquartile ranges for a larger imaging
dataset including schizophrenia patients and healthy individuals (1.11
and 38.3, respectively); volumes exceeding either limit were removed
together with the 1 prior and 2 succeeding volumes]. If 	50% of volu-
mes in a run were removed, the entire run was excluded. After eliminat-
ing volumes and runs in this manner, participants who did not retain a
cumulative total of at least 300 of the 580 volumes (did not retain 10 min
of usable data) were excluded. Three healthy participants were retained
despite having one of their four runs eliminated.

fMRI data analysis. Figure 1B depicts the fMRI data analysis pipeline. A
group spatial ICA was performed by standard methods using the info-
max algorithm (Bell and Sejnowski, 1995) in the group ICA of Functional
MRI Toolbox (http://mialab.mrn.org). Before ICA, the optimal number
of independent components was first determined using a modified min-

imum length algorithm (Li et al., 2007). ICA defines independent com-
ponents (ICs) reflecting spatially independent and temporally coherent
networks. This process uses information from the entire group of partic-
ipants to produce, for each IC, a spatial map with the weights for each
voxel’s contribution to that IC and a time course reflecting the temporal
pattern of activity in that IC. Time courses and spatial maps for each
participant’s set of components can then be back reconstructed. To dis-
play spatial maps of ICs (Fig. 2A), one-sample t tests were performed
incorporating all individual subject maps and then t values were rendered
onto a standard cortical surface using Caret 5 software. In performing
ICA analysis, data from healthy controls and patients with schizophrenia
(the latter group from Study 2; see below) were combined. It has been
previously shown that performing ICA on all participants does not alter
the results compared with performing ICA on individual groups sepa-
rately (Calhoun et al., 2008) but has the benefit of matching components
across groups to allow for between-groups analysis. Aside from the in-
clusion of patients in defining the ICA components, all analyses in Study
1 were run only on healthy controls. When including only healthy con-
trols to define the ICA components, the load-dependent connectivity
measures (our primary measures of interest) were highly correlated to
those produced from the ICA including patients and controls (Pearson r
ranged from 0.98 to 0.99 for the 6 network pairs discussed below). Fol-
lowing ICA, the IC time courses were further processed in MATLAB
before final analyses: removed (scrubbed) volumes were replaced using
linear interpolation, the time courses were broken into runs, high-pass
filtered (cutoff � 0.005 Hz), de-spiked (time points with Cook’s distance
	4/number of time points were replaced with the average of the preced-
ing and succeeding time points), and Z-scored within each run.

To select networks of interest for subsequent functional connectivity
analyses we first removed components likely to be spurious (ie, related to
head movement, ventricle activity, or other signal artifacts) based on
their spatial overlap with white matter and/or CSF (6 ICs were removed
following consensus between 2 independent raters; the remaining 21 ICs
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Figure 2. A, Functional connectivity networks involved in working memory in healthy individuals. Displayed are 3D-rendered spatial maps of 4 ICA components (thresholded at t 	 5.0 in orange
and ranging up to t 	 15.0 in yellow) along with plots of their time-locked average time courses. Components were deemed to represent working memory networks based on differential activity
in the 2-back and 1-back conditions as illustrated by the plots. The plotted lines represent activity of the component averaged over blocks and subjects and bounded by the SEM (shaded area); the
yellow box on the plots represents the time between task onset and offset. Connectivity between pairs of these networks is illustrated by color-coded arrows with connectivity between task-positive
networks represented by warm colors and connectivity between the task-negative aDMN and task-positive networks represented by cold colors. B, Load-dependent changes in internetwork
connectivity. Connectivity between pairs of networks (indexed by the standardized � value) is plotted in the 1-back and 2-back conditions for the four network pairs showing greatest load-
dependent connectivity using the color codes indicated in Figure 2A. Separate plots present data from all participants (n � 39), good performers (n � 29), and poor performers (n � 10). For good
performers, connectivity significantly changed with cognitive load for all four pairs shown. Error bars are 95% confidence intervals representing within-subjects variation (Cousineau, 2005). LR,
Lateral right; LL, lateral left; ML, medial left. One-sample t test. ***p � 0.001, **p � 0.01, *p � 0.05.
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thus represented putative brain networks). We then determined the re-
lationship between the activity of the remaining independent compo-
nents and the working-memory task by performing a subject-level linear
regression on each of the IC time courses. The design matrix included as
regressors (1–2) two boxcar functions defined by the onsets and dura-
tions of the 1-back and 2-back blocks, respectively, and also nuisance
regressors: [(3) a boxcar function corresponding to the presentation of
the instruction screen, (4,5) impulse functions indicating left and right
button presses, (6 –29) 6 motion parameters as well as the derivative,
square, and squared derivative of each, and additionally (30
) 1 dummy
regressor for every scrubbed volume]. For each of the nonspurious ICs
and each participant, the regression coefficients or � values for the 2-back
condition were subtracted from those for the 1-back condition to obtain
a contrast estimate of the change in activation with working-memory
load. Several ICs showed significant change in activation with working-
memory load based on a (group-level) one-sample t test of the contrast
estimates (2-back � 1-back), indicating that they reflected working-
memory-load-related networks; of these four were retained for
functional connectivity analyses (see Results for justification for this
selection). These four networks showed moderate to strong spatial cor-
relation (Pearson r values between 0.34 and 0.55) with T-maps of can-
onical representations of corresponding default-mode, frontal, and
attentional networks derived from resting-state scans of a large dataset of
healthy participants (Allen et al., 2011; http://mialab.mrn.org/data/hcp/
RSN_HC_unthresholded_tmaps.nii).

Finally, internetwork functional connectivity analyses were performed
on the scrubbed time courses of these four ICs. We used Fisher-tra-
nsformed Pearson correlation coefficients between all six pairs of net-
work time courses to create an index of intrinsic connectivity averaged
throughout the experiment which we refer to as load-independent con-
nectivity. To index changes in connectivity with working-memory load,
which we refer to as load-dependent connectivity, our focus in the cur-
rent study, linear regression analyses were performed with one IC time
course as outcome variable (Network A) and as regressors the other IC
time course (Network B), the block index variable (1-back vs 2-back),
and the interaction variable (block � Network B), in the vein of psycho-
physiological interaction analyses (Friston et al., 1997) with regressors
Z-scored. The � value of the interaction term provided an index of load-
dependent connectivity. The block-index variable was coded with zeros
for 1-back task blocks and associated rest/preparatory periods and ones
for 2-back task blocks and associated rest/preparatory periods. Including
periods of active task and rest/preparatory periods together for the
analysis of connectivity has been recommended (Hutchison et al.,
2013) in analyzing load-dependent connectivity to avoid neglecting
important connectivity dynamics occurring in preparation of the
upcoming task (Eichele et al., 2008; Thompson et al., 2013). Furt-
hermore, this strategy may allow more robust measurement of con-
nectivity by capturing a substantial source of variance in the time
courses as networks activate and deactivate through the course of
engaging in and disengaging from the task. We assigned the ICs to be
the independent or dependent variable based on the order in which,
on average, they tended to activate when engaging in working mem-
ory with the later activating IC being assigned as the dependent vari-
able. In pairs including a task-negative IC, the task-positive IC was
always set as the dependent variable.

PET study design and data analysis
Complete description of PET acquisition and analysis were previously
published (Slifstein et al., 2015). A subset of 15 of the healthy controls (8
male) had usable fMRI, behavioral, and PET data. Participants under-
went two PET scans on 1 d with the radiotracer [ 11C]FLB457 at the Yale
University PET Center. A 90 min baseline scan was acquired, followed
immediately by oral administration of amphetamine (0.5 mg/kg) and a
second 90 min scan was acquired 3 h after amphetamine administration.
Arterial plasma data were collected to form metabolite-corrected input
functions. Data were acquired on an HR
 scanner (Siemens). Regions-
of-interest (ROIs) were drawn on each participant’s high resolution
T1-weighted MRI scan according to previously described criteria
(Abi-Dargham et al., 2000, 2012). These ROIs included cortical and sub-

cortical, extrastriatal regions; for the current study the ROI analyzed was
the DLPFC given the critical role of this brain region in working memory
(Weinberger et al., 1988; Sawaguchi and Goldman-Rakic, 1991; Durst-
ewitz and Seamans, 2008; Rolls et al., 2008;Arnsten and Jin, 2014). Data
were analyzed with a two-tissue compartment model that incorporated
a set of shared parameter estimates across regions. Binding potentials
with respect to the nondisplaceable compartment (BPND) were
estimated. We computed the relative change in BPND following amp-
hetamine (�BPND) in each ROI according to �BPND � BPND(postam-
phetamine)/BPND(baseline) � 1.

Behavioral, fMRI functional connectivity, and PET measures were re-
lated to each other using linear regression analyses (Baron and Kenny,
1986; Wager et al., 2009).

Study 2 (healthy individuals versus patients
with schizophrenia)
Participants and clinical measures
A subset of 23 of the healthy participants from Study 1 (11 male) were
selected for Study 2 (Table 1). This subsample was selected to improve
matching as there was evidence that the full sample differed from the
schizophrenia sample on working memory performance, fMRI data
quality, handedness, and race (Table 1). All results were nonetheless
similar when comparing patients with schizophrenia to either the full
sample or this subsample of healthy controls. Twenty unmedicated pa-
tients with schizophrenia (11 male) also participated in this study. Pa-
tients were recruited from the inpatient and outpatient research facilities
at NYSPI and an assessment of capacity was performed by an indepen-
dent psychiatrist before providing consent. Inclusion criteria for patients
were as follows: (1) lifetime DSM-IV diagnosis of schizophrenia, schizo-
affective or schizophreniform disorder; (2) no bipolar disorder; (3) no
antipsychotics for 3 weeks before PET scan; and (4) no history of violent
behavior. Exclusion criteria were similar to those for healthy controls.
Five patients with schizophrenia were excluded due to poor task perfor-
mance and/or poor quality fMRI data according to the same criteria used
in Study 1, leaving a final sample of 15 patients (8 male), 10 of whom (5
male) had PET data. Three patients were retained despite having one run
of fMRI data eliminated. Diagnostic status was determined with the Di-
agnostic Interview for Genetic Studies (Nurnberger et al., 1994) followed
by a consensus diagnosis conference. Severity of symptoms was assessed
using total global scores from the Scale for the Assessment of Positive
symptoms (SAPS; Andreasen, 1984) and the Scale for Assessment of
Negative Symptoms (SANS; Andreasen, 1983). Clinical assessments were
administered by trained interviewers. Further clinical and demographic
information is in Table 1.

fMRI and PET methods
The same procedures were used as in Study 1 for the behavioral task, and
also for the acquisition and analysis of fMRI and PET data. Load-
dependent connectivity measures were compared between healthy
controls and schizophrenia groups using two-sample t tests. The inde-
pendent functional spatial maps (intranetwork connectivity maps repre-
senting mixing coefficients of the components for each voxel as derived
from ICA; Fig. 2A) for the four networks of interest were compared
between the groups in a control analysis using voxelwise, univariate two-
sample t tests to identify voxels showing differential weights on a given IC
(voxels showing differential intranetwork connection strengths) in con-
trols versus patients, which would indicate that a given network’s spatial
structure differs between the groups. Behavioral, fMRI functional con-
nectivity, PET, and clinical measures were related to each other using
linear regression analyses.

Results
Study 1 (healthy individuals)
Behavioral performance
Working memory performance decreased from the 1-back
(mean � SD: AHR � 0.90 � 0.12; accuracy � 94 � 7.6%) to the
2-back condition (AHR � 0.76 � 0.21; accuracy � 86 � 14%).
This decrease was statistically significant (AHR: t(38) � �6.1,
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p � 0.0000004; accuracy: t(38) � �5.0, p � 0.00002). Only 10
participants (26%) and 3 participants (8%) made no errors in the
1-back and the 2-back conditions, respectively, indicating that
this object-based version of the task was more challenging than
more common letter variants.

Identification of functional connectivity networks involved in
working memory
To define functional connectivity networks we performed group
spatial ICA on preprocessed BOLD signal time courses. The op-
timal number of spatial ICs was estimated before ICA analysis to
be 27 (median across subjects � 26.5, mean across subjects �
26.7). The ICA components of interest were selected by first re-
moving artifactual components and then identifying which of the
remaining components, representing putative brain networks,
were involved in working memory by independently regressing
all IC time courses against a model including task-related and
nuisance regressors (see fMRI Methods). To identify working
memory (WM)-related networks (for the purpose of data reduc-
tion and selection rather than hypothesis testing per se), we
searched for ICs in which there was a significant load-dependent
activation. In the 2-back minus 1-back contrast, three networks
showed increased activation (WM-task-positive) and 6 networks
showed decreased activation (WM-task-negative; significant
one-sample t test). We retained as networks of interest all 3 WM-
task-positive ICs: a left FPN (lFPN; t(38) � 4.3; p � 0.0001), a
right FPN (rFPN; t(38) � 4.7; p � 0.00,003) and the CON (t(38) �
3.3; p � 0.002; Fig. 2A). Of the six WM-task-negative networks,
we only retained the anterior DMN (aDMN; Fig. 2A) given our a
priori hypothesis and to minimize the number of tests. Notably,
the aDMN showed the greatest working-memory-dependent-
deactivation (t(38) � �5.3; p � 0.000,006); the posterior DMN
was not retained because it showed similar deactivation in the
1-back and 2-back conditions (t(38) � 0.67; p � 0.51). The spatial
maps of these four networks were highly consistent with canon-
ical ICA-derived networks (Damoiseaux et al., 2006; Fig. 2A).

Load-dependent changes in internetwork connectivity
We performed internetwork functional connectivity analysis on
all six possible pairs of the four ICs retained. Pearson correlation
coefficients (Fisher z-transformed) between pairs of IC time
courses over the full experiment were calculated to provide a
measure of load-independent connectivity similar to that con-
ventionally reported in the functional connectivity literature.
We found that the time courses of the three WM-task-positive
ICs were positively correlated with each other and negatively
correlated with the time series of the WM-task-negative aDMN
(Table 2). We next investigated load-dependent connectivity by
testing a psychophysiological interaction indicating the strength-
ening or weakening of connectivity between networks as a func-
tion of working-memory load (schematically illustrated in
Fig. 1C). The analysis showed a significant load-dependent

change in connectivity for three of the six network pairs (one-
sample t test of standardized interaction �-values; rFPN-CON,
p � 0.029; rFPN-aDMN, p � 0.005; lFPN-aDMN, p � 0.00,002;
Fig. 2B), indicating a significant change in connectivity with
working-memory load. We performed a further analysis in which
we excluded participants in the lowest quartile of performance on
the 2-back condition because we observed that load-dependent
connectivity in these participants showed an opposite trend com-
pared with good performers (Fig. 2B). The remaining 29 good
performers showed significant load-dependent connectivity for
five of the six pairs (one-sample t test of standardized interaction
�-values; Table 2; Fig. 2B).

Behavioral correlates of load-dependent
internetwork connectivity
We next sought to determine the relationship between load-
dependent connectivity and performance in the working-memory
task. We used a backward stepwise linear regression with working
memory performance as the outcome variable and load-dependent
connectivity between all six pairs of ICs as regressors. This allowed us
to see which of the pairs contributed independently to the prediction
of working memory performance by successively removing the least
informative pair until only significant (p � 0.05) predictors re-
mained. With either behavioral measure as the dependent variable,
we found only one predictor was retained in the final model: load-
dependent connectivity between lFPN and rFPN [referred to as �
connectivity lFPN-rFPN; 2-back AHR: R2 � 0.30, standardized � �
0.55, p � 0.0003; differential accuracy (2-back � 1-back): R2 � 0.15,
standardized � � 0.39, p � 0.014; Table 3; Fig. 3A], indicating that
an increase in connectivity between lFPN and rFPN with increasing
WM load predicted better task performance across subjects.

We next wanted to investigate whether load-dependent
connectivity would be the best predictor of task performance
compared with more commonly used measures, such as load-
independent connectivity, load-dependent activation, or PET
dopamine measures. We used the same load-independent
connectivity and load-dependent activation measures de-
scribed above, as well as DLPFC D2 receptor availability
(BPND of the radiotracer [ 11C]FLB457) and DLPFC dopamine
release capacity (�BPND before and after amphetamine ad-
ministration). For each type of measure, we performed back-
ward stepwise regressions to predict performance. Regression
models including load-independent connectivity between the
six IC pairs and regressions including PET dopamine mea-
sures did not retain any significant predictors of either behav-
ioral measure (Table 3; Fig. 3). Regression models including
load-dependent activation of the four ICs did not retain any
networks as predictors of differential accuracy (2-back �
1-back) but did retain activation of the CON and lFPN as
predictors of 2-back AHR (R 2 � 0.22; CON: standardized � �
�0.47, p � 0.012; lFPN: standardized � � 0.52, p � 0.005;
Table 3; Fig. 3). However, multiple lines of evidence indicated
that the load-dependent connectivity model was superior to
the load-dependent activation model in explaining working
memory performance. First, a direct model comparison indi-
cated that the load-dependent connectivity model retained
more information than any of the other models and this
was true for both working memory metrics (Comparing
Akaike Information Criterion across models showed proba-
bilities �5% that any other model was superior to the load-
dependent connectivity model; Table 3; Fig. 3). Second, a
backward stepwise linear regression predicting 2-back AHR
based on load-dependent activation in lFPN and CON, as well as

Table 2. Connectivity between pairs of networks in healthy individuals (n � 39)

lFPN rFPN CON aDMN

lFPN 0.05*** 0.03* �0.10***
rFPN 0.57*** 0.06** �0.07***
CON 0.30*** 0.29*** �0.01
aDMN �0.02 �0.16*** �0.35***

Load-independent connectivity (bottom left, shaded; values are Fisher-transformed Pearson correlation coefficients
averaged across all subjects) and load-dependent connectivity (top right, values are the change in connectivity from
1-back to 2-back averaged across good performers).

One-sample t test. ***p � 0.001, **p � 0.01, *p � 0.05.
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� connectivity, lFPN-rFPN showed that the load-dependent ac-
tivations did not significantly explain any further variance in task
performance than that explained by the load-dependent connec-
tivity measure alone. Last, although load-dependent activation of
the lFPN and CON predicted task performance when included in
a regression model together, neither IC significantly predicted
task performance when included alone in univariate regression
(CON: standardized � � �0.18, p � 0.28; lFPN: standardized

� � 0.27, p � 0.10), further reinforcing the notion that it is the
interplay between networks rather than activity in a single net-
work which is most predictive of interindividual variability in
working memory performance. Thus, these results suggest that
load-dependent connectivity between working-memory net-
works is a better predictor of working memory performance
than other fMRI and PET measures that are more commonly
used.

Table 3. Backward stepwise regressions to predict working-memory performance using different types of fMRI measures in healthy individuals

Task performance measure
(dependent variable)

Type of imaging
measure

Independent variables
entered

Statistics for best model

Predictors retained,
standardized � values R 2 Adj. R 2 AICc AICca (n � 15) F (df)

2-back AHR Load-dependent
connectivity (n � 39)

6 network pairs lFPN-rFPN, � � 0.55*** 0.30 0.28 �133 �61.3 15.7*** (1, 38)

Load-independent
connectivity (n � 39)

6 network pairs CON-rFPN � � �0.22 0.05 0.02 �121 �44.5 1.8 (1, 38)

Load-dependent
activation (n � 39)

4 networks CON, � � �0.47* lFPN, � � 0.52** 0.22 0.18 �125 �43.0 5.1* (2, 38)

PET dopamine (n � 15) DLPFC BPND , DLPFC �BPND �BPND , � � �0.34 0.11 0.05 — �46.2 1.7 (1, 14)
Differential accuracy

(2-back � 1-back)
Load-dependent

connectivity (n � 39)
6 network pairs lFPN-rFPN, � � 0.39* 0.15 0.13 �128 �40.9 6.7* (1, 38)

Load-independent
connectivity (n � 39)

6 network pairs CON-lFPN � � 0.22 0.05 0.02 �124 �42.6 1.8 (1, 38)

Load-dependent
activation (n � 39)

4 networks lFPN, � � 0.47* rFPN, � � �0.45 0.12 0.07 �123 �35.0 2.5 (2, 38)

PET dopamine (n � 15) DLPFC BPND , DLPFC �BPND BPND , � � 0.29 0.08 0.01 — �38.8 1.14 (1, 14)
aAICc, Corrected AIC calculated to compare models on the subsample with PET dopamine measures (n � 15).

***p � 0.001, **p � 0.01, *p � 0.05.
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Figure 3. A–D, Scatterplots indicating the relationship between working memory performance and different imaging measures in healthy individuals (n � 39). Solid lines represent linear fits
and broken lines represent logistic fits. For each type of imaging measure, the best predictor or set of predictors were selected. The model in C includes two predictor variables and statistics are
presented for both of them (�1 � CON; �2 � lFPN). E, Comparison of regression models presented in the scatterplots. According to both AIC and adjusted R 2, load-dependent connectivity was the
imaging measure which best predicted working memory performance This was also true if logistic fits were used (data not shown). AIC is shown for models including the full sample (broad bars) as
well for models including only the subsample with data for dopamine-release capacity (inset, narrow bars).
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Role of dopamine release capacity in
load-dependent internetwork
connectivity
Contrary to our hypothesis, DLPFC dopa-
mine release and D2 receptor availability did
not predict � connectivity lFPN-rFPN
when included together in a linear regres-
sion model (model: F(2,14) � 1.9, p � 0.19,
R2 � 0.24; �BPND: standardized � �
�0.71, p � 0.077; BPND: standardized � �
0.59, p � 0.13) or when included alone in
separate models (all p values 	0.3). Thus,
load-dependent connectivity between net-
works did not seem to relate to dopamine
signaling, at least not to the PET dopamine
measures we obtained in vivo.

Study 2 (healthy individuals compared
with patients with schizophrenia)
We next investigated the clinical relevance
of load-dependent internetwork connec-
tivity by comparing a subsample of these
healthy participants to 15 unmedicated
patients with schizophrenia. Consistent
with the well established deficit in work-
ing memory associated with this disorder
(Lee and Park, 2005), the schizophrenia
group showed a large deficit relative to the
whole group of healthy controls in work-
ing memory performance according to
the 2-back AHR (two-sample t test, t(52) �
2.7, p � 0.010, Cohen’s d � 0.74) but this
was not the case when comparing against
the subsample of healthy participants
matched at the group level on working
memory performance, demographics,
and fMRI scan quality (all p values 	0.4);
see Materials and Methods; Table 1).

We first aimed to confirm that patients
and healthy controls both used the same
working-memory networks by searching
for networks showing significant load-dependent activation in
patients. Similar to controls, patients with schizophrenia showed
significant load-dependent increase in activation of the lFPN and
rFPN and decrease in activation of the aDMN (all p values
�0.05); however, patients did not show evidence of load-
dependent activation of the CON (one-sample t test, p � 0.31).
Aside from these three ICs, there was little indication of load-
dependent activation of any other ICs in schizophrenia (all other
ICs had one-sample t values �1.6). There were no significant
differences in load-dependent activation of any of these networks
between the 2 groups (all p values 	0.7).

We sought to confirm that any group differences related to
internetwork connectivity would not be secondary to differences
in the structure of the networks themselves by examining intra-
network connectivity as measured from the ICA-derived spatial
maps which reflect the weight of each voxel on each component.
We compared subject-level connectivity maps for the four
networks between unmedicated schizophrenia patients and
matched controls via voxelwise, two-sample t tests. Although
previous studies have shown abnormalities in intranetwork con-
nectivity in schizophrenia (Jafri et al., 2008; Lui et al., 2010; van
den Heuvel and Fornito, 2014) we found no significant differ-

ences between groups for any of the 4 maps (all cluster-level
FWE-corrected p values 	0.05).

The schizophrenia group did not differ significantly from
matched controls on load-dependent internetwork connectivity
for any of the six IC pairs (two-sample tests, all p values 	0.17;
Fig. 4A). Unlike healthy controls, a backward stepwise linear re-
gression in patients to predict 2-back AHR based on load-
dependent connectivity did not retain any network pairs. To
investigate whether the relationship between working memory
performance and � connectivity lFPN-rFPN was different in
schizophrenia compared with healthy controls, we conducted a
linear regression analysis with 2-back AHR as dependent variable
and three independent variables: group, � connectivity lFPN-
rFPN, and an interaction term of group by � connectivity lFPN-
rFPN. We found a significant interaction (standardized � � 0.55,
p � 0.025) indicating that working memory performance was
more closely related to � connectivity lFPN-rFPN in controls
than in patients, for whom these factors appeared unrelated (in
patients � connectivity lFPN-rFPN standardized � � �0.04, p �
0.86; Fig. 4B). We found evidence that one patient could be an
influential outlier in this regression (Cook’s distance 	4/n; Fig.
4B). Therefore we reran the analysis using robust regression

A B

Figure 4. Comparing individuals with schizophrenia to matched healthy controls. A, Load-dependent changes in internetwork
connectivity did not significantly differ between patients (n � 15) and controls (n � 23; 4 of 6 network pairs shown). Consistent
with well established evidence of abnormalities in intrinsic connectivity in schizophrenia, the figure indicates differences between
the groups in load-independent connectivity (particularly between lFPN and aDMN). Post hoc analyses did not find load-
independent connectivity to correlate to clinical or cognitive measures in patients. Error bars are 95% confidence intervals repre-
senting within-subjects variation (Cousineau, 2005). B, Top, Scatterplot indicating the relationship between working memory
performance and load-dependent connectivity of frontoparietal networks in patients (broken line) and controls (solid line). In
matched healthy controls working memory performance was greater in subjects with higher load-dependent connectivity of
frontoparietal networks (�� 0.66, p � 0.001); however, this did not appear to be the case among individuals with schizophrenia
(���0.04, p � 0.86). There was evidence that one patient (indicated by gray-filled square in top-left corner) was an influential
outlier in this regression (Cook’s distance � 0.49); however, the results of a robust regression confirmed that working memory
performance was not dependent on load-dependent connectivity in patients. Bottom, Scatterplot indicating the relationship
between working memory performance and dopamine release capacity in patients (n � 10) and matched controls (n � 12). The
slopes of the regression lines relating working memory performance to dopamine release capacity were in opposite directions in
patients (broken black line; � � 0.64, p � 0.046) and matched controls (solid black line; � � �0.63, p � 0.054). When
combining the groups together, the relationship between these variables fit an inverted-U-shaped curve (broken gray line). �int,
Standardized � for the interaction term of imaging measure by group.
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(robustfit in MATLAB) and the group by � connectivity lFPN-
rFPN interaction was still significant (standardized � � 0.52, p �
0.045) and the slope relating � connectivity lFPN-rFPN to per-
formance remained flat in patients (standardized � � �0.003,
p � 0.99). To further ensure this result was not due to the spatial
structure of the networks differing between the groups we ran
separate ICAs for patients and controls and found that the
relationship between � connectivity lFPN-rFPN and task perfor-
mance for the respective groups remained similar (controls: stan-
dardized � � 0.66; patients: standardized � � �0.18) to those
from the combined ICA including all subjects described above.
Thus, although most patients with schizophrenia showed the ex-
pected changes in FPN connectivity in response to working
memory load, this increase was not related to intersubject varia-
tion in working memory performance.

Furthermore, the significant group by � connectivity lFPN-
rFPN interaction on working memory performance was not
likely due to abnormalities in DLPFC dopamine release capacity
in patients. An exploratory analysis (n � 10 schizophrenia pa-
tients and 12 healthy controls) using the above regression model
with the addition of DLPFC dopamine release and an interaction
term for DLPFC dopamine release by � connectivity lFPN-rFPN
found that the interaction of group by � connectivity lFPN-rFPN
remained nearly significant despite the decrease in degrees of
freedom in this analysis (standardized � � 0.78, p � 0.062).

Because our principal measure of interest, � connectivity
lFPN-rFPN, did not predict interindividual differences in task
performance in patients, we performed further exploratory anal-
yses in search for a variable that would explain variability in per-
formance among patients. Given interest in the role of cortical
dopamine in working memory deficits in schizophrenia (Wein-
berger et al., 1988; Durstewitz and Seamans, 2008; Rolls et al.,
2008; Arnsten and Jin, 2014), we investigated whether patients’
performance might be related to PET dopamine measures, de-
spite failing to detect such a relationship in healthy individuals.
We found that a backward stepwise regression including DLPFC
BPND and �BPND retained �BPND as a significant predictor of
working memory performance (R 2 � 0.41, standardized � �
0.64, p � 0.046; Fig. 4) indicating that patients with lower dopa-
mine release capacity had poorer working memory performance.
We next tested patients and matched controls together in a linear
regression analysis with 2-back AHR as dependent variable and
three independent variables: group, DLPFC �BPND, and an in-
teraction term of group by DLPFC �BPND. We found a signifi-
cant interaction (R 2 � 0.38, standardized � � 0.86, p � 0.007),
indicating that the effect of dopamine release capacity on perfor-
mance was significantly more positive in patients than controls
(Fig. 4). Similar to our previous report of an overlapping cohort
(Slifstein et al., 2015), patients in this study had lower DLPFC
dopamine release than controls (t21 � �2.3, p � 0.035). This fact,
combined with the difference in slopes between patients and
controls led us to test a quadratic model (inverted U) with the
groups combined to predict performance based on �BPND and
(�BPND) 2. Although the overall model was not significant
(F(2,21) � 3.2, p � 0.061), the quadratic term was a significant
predictor (standardized � � �0.48, p � 0.025), and the Akaike
information criterion (AIC) for the quadratic model was similar
to that of the linear model where separate slopes were fit for each
group (both AIC � �69). Together, this provides some support
for the notion of an optimal range for dopamine release outside
of which performance drops. In this framework, patients in gen-
eral would occupy the lower end of this range and those with
more dopamine release capacity would be closer to the optimal

range and would thus have better performance. Altogether, these
exploratory analyses could suggest that dynamic connectivity and
dopamine may be affecting working memory performance
through different pathways with the former being more relevant
in controls and the latter in patients.

There were no significant relationships between � connectiv-
ity lFPN-rFPN and dopamine measures in patients.

Finally, exploratory analyses in a subset of 12 patients with
available clinical severity scores showed a significant relationship
between � connectivity lFPN-rFPN and positive symptoms
(SAPS: standardized � � �0.66, p � 0.020) but not negative
symptoms (SANS: standardized � � 0.10, p � 0.75); indicating
patients with higher positive symptom scores had lower � con-
nectivity lFPN-rFPN.

Discussion
Our findings provide evidence that dynamic interactions be-
tween brain networks underlie successful working memory
performance. A novel fMRI measure of working memory load-
dependent internetwork connectivity predicted interindividual
differences in task performance better than other imaging mea-
sures, suggesting that brain-network dynamics may be a key fac-
tor in determining adaptive, goal-oriented behaviors. We did not
find evidence that adaptive communication between brain net-
works could be a mechanism through which dopamine signaling
modulates cognitive performance. Adaptive internetwork com-
munication is observed in schizophrenia but may not effectively
subserve working memory in this condition. We found prelimi-
nary evidence that deficient prefrontal dopamine release could
directly underlie interindividual differences in working memory
performance among patients with schizophrenia.

Load-dependent internetwork connectivity
Previous studies of working memory have investigated con-
nectivity of brain networks (Meda et al., 2009; Sambataro et
al., 2009) or task-dependent changes in connectivity between
specific brain regions (Anticevic et al., 2010, 2012; Rasetti et
al., 2011;Bähner et al., 2015). Our study is to our knowledge
the first combining both approaches and investigating load-
dependent internetwork connectivity during working mem-
ory. Consistent with our findings, previous studies found
working memory to be subserved by frontoparietal networks
(Kim et al., 2009; Meda et al., 2009; Sambataro et al., 2009) and
prefrontal interhemispheric connectivity to increase with
working memory load (Rasetti et al., 2011).

Load-dependent connectivity was a better predictor of work-
ing memory performance across subjects than load-dependent
activation, load-independent connectivity, or PET dopamine
measures, suggesting that it is the capacity for the networks to
dynamically adjust connectivity in response to changes in cogni-
tive demand that is essential for successful execution of complex
cognitive processes like working memory. Furthermore, load-
dependent connectivity suffers less from limitations inherent to
the other fMRI measures which may obscure associations with
task performance: it is hard to disentangle whether low load-
dependent activation would be associated with poor perfor-
mance (eg, due to task disengagement) or good performance (eg,
indicative of less error-related activation (Danielmeier et al.,
2011), greater metabolic efficiency, or less time on task). On the
other hand, load-independent connectivity does not take into
account how neural function is influenced by task manipulations
thereby overlooking critical information, which is captured by
load-dependent connectivity.
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Our data suggest that increased communication between
frontoparietal networks accounts for the association between
load-dependent connectivity and working memory performance
because increased load-dependent activity in both networks
(which could spuriously inflate the “connectivity” measured be-
tween them even if they act in parallel) did not predict perfor-
mance. This increase in internetwork communication may
reflect enhanced integration of distinct functions subserved by
each of these networks (Goel, 2015). Increased connectivity be-
tween FPNs could also be due to a shift in network structure
toward a merged FPN spanning both hemispheres; however, an
exploratory analysis performing ICA separately in 1-back and
2-back conditions revealed similar network structure in the two
conditions (data not shown).

Dopamine, load-dependent internetwork connectivity, and
working memory
Our hypothesis that load-dependent connectivity between working-
memory networks would be related to cortical dopamine release
capacity across subjects was not confirmed. Because this relationship
was not significant for the fMRI measure we have shown to be most
related to working memory performance, it raises the question of
whether the role of dopamine release on working memory is inde-
pendent of network-level brain processing. Nevertheless, we do not
view this result as conclusive and further replication in a larger sam-
ple is warranted; especially in light of the nonsignificant trend we
observed relating dopamine and dynamic connectivity measures.
Furthermore, our PET dopamine measure may not be ideal for our
purposes because we examine amphetamine-induced dopamine re-
lease rather than task-induced release. Task-induced cortical DA re-
lease, although preferable, has not been shown to be a reliable
measure with PET methodology.

Studies looking at effects of dopaminergic challenges (Sawa-
guchi and Goldman-Rakic, 1991) or genetic variation (Samba-
taro et al., 2009) have indicated a critical role for cortical
dopamine release in working memory. However, in healthy indi-
viduals we did not find evidence supporting a role for cortical
dopamine release capacity in explaining interindividual variabil-
ity in working memory performance. This inconsistency may be
due to limitations in power or the type of dopamine measure used
(described in the preceding paragraph) or else it could be due to
difficulties predicting the impact of dopamine function on cog-
nition given the inverted-U function governing their relationship
(Cools and D’Esposito, 2011).

Load-dependent internetwork connectivity
and schizophrenia
Our main finding in the clinical sample was that the seemingly
normal changes in load-dependent connectivity between FPNs
shown by unmedicated individuals with schizophrenia did not
predict better task performance whereas deficits in dopamine
release capacity did. Both of these relationships were in contrast
to what we observed in controls. Schizophrenia is associated with
deficits in working memory and other aspects of cognition (Lee
and Park, 2005) and has long been theorized to be a disorder of
dysconnectivity (Stephan et al., 2009). The neurobiological basis
of working memory deficits in schizophrenia remains poorly un-
derstood and it is difficult to disentangle effects primary to the
disorder from those secondary to treatment with antipsychotic
medication, a confound minimized in our unmedicated sample.
Past research has indicated that working memory deficits in this
disorder could be related to abnormal connectivity between task-
positive and task-negative networks (Whitfield-Gabrieli et al.,

2009), whereas connectivity within and between the DMN, CON,
and FPN have all been implicated in schizophrenia (Jafri et al.,
2008; Whitfield-Gabrieli et al., 2009; Lui et al., 2010; Manoliu et
al., 2014; Pankow et al., 2015). However, our study is the first to
investigate the role of task-dependent modulation of internet-
work connectivity in the cognitive deficits of schizophrenia.

It is intriguing that the main factor explaining interindividual
differences in working memory performance in health was unre-
lated to performance in unmedicated individuals with schizo-
phrenia, suggesting that patients’ brains may not be properly
exploiting these dynamic network interactions. The deficit could
lie downstream in cognitive processing from the increase in FPN
connectivity or else different networks could usurp working
memory functions in schizophrenia (although we did not see
evidence of this). It is also possible that the deficit in load-
dependent connectivity in schizophrenia could not be detected
by the large-scale spatial and temporal resolution of our measure.
Indeed, a previous report found individuals with schizophrenia
to have decreased working memory-load-dependent connectiv-
ity between left and right prefrontal cortex (Rasetti et al., 2011).
The absence of a similar deficit in load-dependent connectivity
between frontoparietal networks (or other working memory-
related networks) should be interpreted with caution since our
analyses may have lacked sufficient statistical power to detect it.

Our exploratory analysis did not find evidence to support the
possibility that dynamic connectivity fails to influence working
memory performance in schizophrenia patients due to deficits in
cortical dopamine release capacity in this condition (Slifstein et
al., 2015). However, cortical dopamine release deficits themselves
predicted poor performance in schizophrenia, consistent with
long-theorized ideas about dopamine and cognition in schizo-
phrenia (Rolls et al., 2008; Weinberger et al., 1988). Furthermore,
the relationship between dopamine release and working memory
performance had an opposite linear trend in patients and con-
trols and, when combining the 2 groups, showed some evidence
of an inverted-U pattern. Thus for individuals with schizophre-
nia who tend to have deficits in dopamine release, higher release
capacity relates to better performance. Lack of adequate dopa-
mine release may impair D1-receptor-mediated recurrent exci-
tation within neural networks that maintain representations held
in memory and thereby decrease their signal-to-noise ratio and
produce less stable attractor states (Durstewitz and Seamans,
2002; Rolls et al., 2008). It is also possible that increased dopa-
mine release may only be helpful for individuals with poor work-
ing memory, whereas higher performers may have sufficient
cognitive resources or strategies to make them less dependent on
dopamine. Although our findings relating dopamine release to
working memory are interesting, they were the result of explor-
atory analyses and not the primary focus of the current study.
They should be interpreted with caution because of the limited
statistical power and our failure to observe a similar relationship
in a larger study using other working-memory tasks (Slifstein et
al., 2015).

Despite not relating to patients’ task performance, we were
intrigued to observe that our principal fMRI measure of interest,
� connectivity lFPN-rFPN correlated with severity of positive
symptoms. This observation is consistent with the theory that
positive symptoms are related to noisy signaling in cortical net-
works (Rolls et al., 2008), which could impede load-dependent
changes in their functional connectivity. However, due to the
small sample, this finding should be considered with caution and
warrants replication.
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Conclusion
We found that connectivity between brain networks changes as a
function of cognitive load during a working-memory task. This
measure of load-dependent connectivity outperformed tradi-
tional fMRI and PET measures of dopamine release capacity in
predicting brain– behavior relationships in healthy individuals.
Such dynamic interactions of brain systems appear to be relevant
to understanding cognitive deficits in psychiatric conditions
since we observed that the relationship between load-dependent
network connectivity and task performance was disrupted in
patients with schizophrenia. Together, our findings suggest that
dynamic interactions between brain networks may support the
type of flexible adaptations in response to changing environmen-
tal demands that are essential to our everyday functioning.
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RE, Jiménez-Anguiano A, Velázquez-Moctezuma J (2012) Sleep depri-
vation affects working memory in low but not in high complexity for the
n-back test. Neurosci Med 3:380 –386. CrossRef

Thompson GJ, Magnuson ME, Merritt MD, Schwarb H, Pan WJ, McKinley
A, Tripp LD, Schumacher EH, Keilholz SD (2013) Short-time windows
of correlation between large-scale functional brain networks predict vig-
ilance intraindividually and interindividually. Hum Brain Mapp 34:
3280 –3298. CrossRef Medline

van den Heuvel MP, Fornito A (2014) Brain networks in schizophrenia.
Neuropsychol Rev 24:32– 48. CrossRef Medline

Van Snellenberg JX, Slifstein M, Read C, Weber J, Thompson JL, Wager TD,
Shohamy D, Abi-Dargham A, Smith EE (2015) Dynamic shifts in brain
network activation during supracapacity working memory task perfor-
mance. Hum Brain Mapp 36:1245–1264. CrossRef Medline

Wager TD, Waugh CE, Lindquist M, Noll DC, Fredrickson BL, Taylor SF
(2009) Brain mediators of cardiovascular responses to social threat: part
I: reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex
and heart-rate reactivity. Neuroimage 47:821– 835. CrossRef Medline

Weinberger DR, Berman KF, Chase TN (1988) Mesocortical dopaminergic
function and human cognition. Ann N Y Acad Sci 537:330 –338. CrossRef
Medline

Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV,
McCarley RW, Shenton ME, Green AI, Nieto-Castanon A, LaViolette P,
Wojcik J, Gabrieli JD, Seidman LJ (2009) Hyperactivity and hypercon-
nectivity of the default network in schizophrenia and in first-degree rela-
tives of persons with schizophrenia. Proc Natl Acad Sci U S A 106:
1279 –1284. CrossRef Medline

4388 • J. Neurosci., April 13, 2016 • 36(15):4377– 4388 Cassidy et al. • Dynamic Internetwork Connectivity & Working Memory

http://dx.doi.org/10.1037/0021-843X.114.4.599
http://www.ncbi.nlm.nih.gov/pubmed/16351383
http://dx.doi.org/10.1002/hbm.20359
http://www.ncbi.nlm.nih.gov/pubmed/17274023
http://dx.doi.org/10.1177/1073858406298480
http://www.ncbi.nlm.nih.gov/pubmed/17519368
http://dx.doi.org/10.1001/archgenpsychiatry.2010.84
http://www.ncbi.nlm.nih.gov/pubmed/20679586
http://dx.doi.org/10.1093/schbul/sbt037
http://www.ncbi.nlm.nih.gov/pubmed/23519021
http://dx.doi.org/10.1371/journal.pone.0007911
http://www.ncbi.nlm.nih.gov/pubmed/19936244
http://dx.doi.org/10.1523/JNEUROSCI.3921-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18385328
http://dx.doi.org/10.1371/journal.pone.0046832
http://www.ncbi.nlm.nih.gov/pubmed/23056476
http://dx.doi.org/10.1016/0028-3932(71)90067-4
http://www.ncbi.nlm.nih.gov/pubmed/5146491
http://dx.doi.org/10.1016/j.schres.2015.03.027
http://www.ncbi.nlm.nih.gov/pubmed/25892719
http://dx.doi.org/10.1016/j.neuron.2013.01.038
http://www.ncbi.nlm.nih.gov/pubmed/23522049
http://dx.doi.org/10.1016/j.neuroimage.2011.10.018
http://www.ncbi.nlm.nih.gov/pubmed/22019881
http://dx.doi.org/10.1001/archgenpsychiatry.2011.103
http://www.ncbi.nlm.nih.gov/pubmed/21810628
http://dx.doi.org/10.1038/nrn2462
http://www.ncbi.nlm.nih.gov/pubmed/18714326
http://dx.doi.org/10.1371/journal.pone.0099250
http://www.ncbi.nlm.nih.gov/pubmed/24911016
http://dx.doi.org/10.1016/j.biopsych.2009.04.014
http://www.ncbi.nlm.nih.gov/pubmed/19539269
http://dx.doi.org/10.1126/science.1825731
http://www.ncbi.nlm.nih.gov/pubmed/1825731
http://dx.doi.org/10.1523/JNEUROSCI.4903-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25855174
http://dx.doi.org/10.1001/jamapsychiatry.2014.2414
http://www.ncbi.nlm.nih.gov/pubmed/25651194
http://dx.doi.org/10.1093/schbul/sbn176
http://www.ncbi.nlm.nih.gov/pubmed/19155345
http://dx.doi.org/10.4236/nm.2012.34047
http://dx.doi.org/10.1002/hbm.22140
http://www.ncbi.nlm.nih.gov/pubmed/22736565
http://dx.doi.org/10.1007/s11065-014-9248-7
http://www.ncbi.nlm.nih.gov/pubmed/24500505
http://dx.doi.org/10.1002/hbm.22699
http://www.ncbi.nlm.nih.gov/pubmed/25422039
http://dx.doi.org/10.1016/j.neuroimage.2009.05.043
http://www.ncbi.nlm.nih.gov/pubmed/19465137
http://dx.doi.org/10.1111/j.1749-6632.1988.tb42117.x
http://www.ncbi.nlm.nih.gov/pubmed/2974264
http://dx.doi.org/10.1073/pnas.0809141106
http://www.ncbi.nlm.nih.gov/pubmed/19164577

	Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia
	Introduction
	Materials and Methods
	Study 1 (healthy individuals)
	Task procedures
	fMRI methods
	PET study design and data analysis
	Study 2 (healthy individuals versus patients with schizophrenia)
	fMRI and PET methods

	Results
	Study 1 (healthy individuals)
	Behavioral performance
	Load-dependent changes in internetwork connectivity
	Behavioral correlates of load-dependent internetwork connectivity
	Discussion
	Load-dependent internetwork connectivity
	Load-dependent internetwork connectivity and schizophrenia
	Conclusion

