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Background: Recent findings demonstrate that patients 
with schizophrenia are worse at learning to predict rewards 
than losses, suggesting that motivational context modulates 
learning in this disease. However, these findings derive from 
studies in patients treated with antipsychotic medications, 
D2 receptor antagonists that may interfere with the neu-
ral systems that underlie motivation and learning. Thus, it 
remains unknown how motivational context affects learning 
in schizophrenia, separate from the effects of medication. 
Methods: To examine the impact of motivational context on 
learning in schizophrenia, we tested 16 unmedicated patients 
with schizophrenia and 23 matched controls on a probabilis-
tic learning task while they underwent functional magnetic 
resonance imaging (fMRI) under 2 conditions: one in which 
they pursued rewards, and one in which they avoided losses. 
Computational models were used to derive trial-by-trial 
prediction error responses to feedback. Results: Patients 
performed worse than controls on the learning task over-
all, but there were no behavioral effects of condition. FMRI 
revealed an attenuated prediction error response in patients 
in the medial prefrontal cortex, striatum, and medial tem-
poral lobe when learning to predict rewards, but not when 
learning to avoid losses. Conclusions: Patients with schizo-
phrenia showed differences in learning-related brain activity 
when learning to predict rewards, but not when learning to 
avoid losses. Together with prior work, these results suggest 
that motivational deficits related to learning in schizophre-
nia are characteristic of the disease and not solely a result 
of antipsychotic treatment.

Key words: prediction error/antipsychotic medication/ 
reinforcement learning/model-based fMRI/ 
neuroimaging

Introduction

Dopamine is thought to play a role in incentive salience, 
reinforcement learning,1–3 and in the pathophysiology of 
schizophrenia.4–6 Consequently, it has been postulated 
that deficits in reward signaling and/or value represen-
tation may be related to the affective and motivational 
(negative) symptoms of schizophrenia,7–12 and to abnor-
mal attributions of salience that are characteristic of pos-
itive symptoms.13,14

In reinforcement learning, a prediction error (PE) is 
the difference between the reward received and what was 
expected.1 This learning signal is a critical component in 
the computation and maintenance of value that supports 
the ability to anticipate, seek, and select cues that maxi-
mize gain and minimize loss.15,16 PE magnitude correlates 
with dopaminergic signaling,1,2 and is typically observed 
in regions known to be both targets of midbrain dopa-
minergic projections and involved in value conceptual-
ization.17,18 In humans, functional magnetic resonance 
imaging (fMRI) studies have shown that PE signals cor-
relate with activity in the ventral tegmental area, stria-
tum, and regions of medial/orbitofrontal prefrontal and 
parietal cortices.16,17,19–21 Patients with schizophrenia dem-
onstrate blunting of PEs in these regions,22–26 suggesting 
that motivational deficits are related to abnormal dopa-
minergic value signals.

In schizophrenia, performance deficits and attenuated 
BOLD responses in reinforcement learning have been 
reported when patients update positive, relative to nega-
tive, outcomes.8–11,24,27,28 This may be related to alterations 
in dopamine transmission in schizophrenia, as evidence 
from dopaminergic alterations in Parkinson’s disease and 
pharmacological interventions in healthy controls have 
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demonstrated similar asymmetrical effects of dopamine 
on learning to predict positive vs negative outcomes.29–31 
Furthermore, larger doses of antipsychotic medication 
are associated with attenuated PEs in the striatum and 
prefrontal cortex (PFC).27

Because many patient participants in these studies 
were receiving antipsychotic medication during testing, 
it remains possible that antipsychotics, which are potent 
D2 receptor (D2R) antagonists, may enhance loss learn-
ing32,33 or attenuate positive error signals.30,34 Further, 
while the few studies that examined reinforcement learn-
ing in unmedicated patients with schizophrenia demon-
strated attenuation of striatal PEs when learning from 
rewards,26,35–37 none employed a loss condition to examine 
how motivational context, which has been described as 
“information regarding the attractiveness/aversiveness 
of the past, present, or possible future reward/threat,”38 
impacts learning in this population. Generally, motiva-
tional effects related to reward and punishment expec-
tation and learning might manifest either trial-wise, to 
correct vs incorrect feedback, or contextually between 
situations or conditions involving reward vs loss (here, 
unlike most work in this area, we primarily investigate the 
latter possibility). Because schizophrenia is specifically 
associated with motivational deficits,12 understanding the 
mechanisms underlying reinforcement learning across 
motivational contexts in the absence of pharmacological 
D2R blockade is especially important.

To address this, we used a reinforcement learning task 
with 2 separate conditions in which unmedicated patients 
with schizophrenia and demographically-matched con-
trols learned to (1) pursue reward and (2) avoid loss. We 
sought to determine whether group differences existed in 
learning signals when predicting rewards vs losses at the 
behavioral and neural levels. Given evidence supporting 
deficits in approach motivation,12 response to positive 
stimuli,8 and reward context performance28 in schizo-
phrenia, we expected to observe blunted PE response in 
patients vs controls especially when learning to predict 
rewards and specifically in the striatum and medial pre-
frontal cortex (mPFC), regions thought to be critically 
involved in reinforcement learning and associated with 
value-related deficits in schizophrenia.22,26,35,39,40

Methods

Participants

Twenty-three controls (mean age = 33.7 y, SD = 8.6; 13 
females) and 16 patients (ages 19–55, mean age = 34.3, 
SD = 10.5, 7 females, medication-naïve = 7, medication-
free  =  9) participated in the study. All spoke English. 
Patients were stable outpatients at the New York State 
Psychiatric Institute. All study procedures were approved 
by the Institutional Review Board and participants pro-
vided written informed consent prior to participation. 
Patients had a diagnosis of DSM-IV schizophrenia, 

schizoaffective disorder, or schizophreniform disorder 
confirmed with the Diagnostic Instrument for Genetic 
Studies.41 Controls were matched on age, sex, ethnicity, 
and parental socioeconomic status (table  1). Exclusion 
criteria were positive urine toxicology, pregnancy, comor-
bid Axis I  disorder (with the exception of history of 
substance use with no use in the past 6 mo), neurologi-
cal disorders, and current psychotropic medication use. 
Controls were excluded for any psychiatric disorder and 
family history (first-degree) of schizophrenia.

Procedures and Task

In the scanner, participants first performed a working 
memory battery, reported separately.42 Participants per-
formed a short practice session, in which they were able 
to ask questions, before completing 2 non-intermixed, 
separate, counterbalanced phases of 60 trials (120 total 
trials) of a probabilistic reinforcement learning task.28 
They were instructed that their goal was either to make 
money (gain condition), or avoid losing money endowed 
prior to task (loss condition, $40 endowment). On each 
trial (figure 1) jittered intervals separated (1) choice (3 s) 
between 1 of 2 geometric stimuli; (2) written verbal feed-
back (“Correct”/”Incorrect,” 1 s); and (3) monetary out-
come related to performance (high-resolution image of 
the currency received, 1 s). Inter-stimulus and inter-trial-
intervals lasted 3–7 seconds, taken from an exponential 
distribution. One of the available shapes was the “opti-
mal” stimulus that yielded “Correct” feedback 70% of the 
time, while the other yielded “Correct” feedback only 30% 
of the time. Stimuli were counterbalanced for condition 
and optimal shape. Participants were instructed that they 
would receive the actual monetary outcome shown during 
the task in addition to compensation for participation.

Monetary outcome was linked to feedback probabilisti-
cally. In the gain condition, when a participant was cor-
rect, they received either $1 or $0.50 (50% probability). 
When incorrect, they received $0.50 or no earnings. When 
a participant was correct in the loss condition, they either 

Table 1. Group Demographics

Demographics Patients (SD) Controls (SD)

N 16 23
Age 34.3 (10.5) 33.7 (8.5)
Parental socioeconomic status 42.9 (13) 39.9 (14)
Gender (M/F) 9M/7F 10M/13F
Illness duration 14.2(11.8) N/A
PANSS (General)* 28.4 (6.9) 16.9 (1.3)
PANSS (Negative)* 16.2 (5.8) 8.7 (1.4)
PANSS (Positive)* 13.7 (4.5) 7 (0)

Note: PANSS, positive and negative syndrome scale. Significant 
demographic group differences are denoted with *. Parental SES 
(socioeconomic status) data missing for 2 controls and 1 patient. 
PANSS missing for 4 controls and 1 patient.
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lost no money or $0.50, and when incorrect, they lost $1 or 
$0.50. This design was implemented to equate the magni-
tude of both positive and negative PEs across conditions, 
while allowing for differences in motivational context. 
If  participants failed to respond within 3 seconds they 
received the worst possible outcome for that condition.

This task involves 2 feedback phases, first correct/
incorrect, then monetary, which in principle, may affect 
choices or induce PEs. In practice, the correct/incorrect 
feedback is more informative and immediate than the 
later, noisy, monetary payoff. Accordingly, analyses (not 
reported here) weighing both feedback events indicated 
that behavioral and neural effects were predominantly 
driven by the initial feedback. Thus, analyses in this paper 
concern learning and PEs driven by verbal feedback.

Reinforcement Learning Model

To assess learning and to model BOLD PE signals, we 
fit a reinforcement learning model16,43,44 to each subject’s 
choices to estimate 2 free parameters for each subject and 
condition (gain/loss). On each trial (t), the model can 
learn from the PE (δ) at feedback (fb) about the choice 
(c), which is linked to the monetary reward outcome. 
These are used to learn the expected values (Q) associ-
ated with the choices and feedback:

Q Qc t c t t( ) ( ) *= + α δ

δt c tfb t Q= −( ) ( )

The model contains a free learning rate parameter (α) 
estimated separately for each subject and condition. The 
learning rate reflects how strongly PE affects value updat-
ing across all trials in each condition, as measured by their 
choices. Critically, the ability to update the cue value relies 

on information in the form of PE, the difference between 
value expected and outcome received (δ). We further 
assumed that participants made their choices according 
to the learned values Qc t( )  at each step using a softmax 
distribution with free inverse temperature parameter β, 
which effectively serves as a regression weight that con-
trols the extent to which Q values determine participant 
choices.44 To estimate the free parameters (and specifi-
cally the effects of group and condition on them), and to 
generate subject-specific trial-by-trial PE timeseries given 
each participant’s data for subsequent fMRI analysis, we 
used Bayesian MCMC statistical inference.45–47 We also 
examined 2 follow-up elaborations of the baseline model, 
in which either the learning rate or the scaling of the feed-
back term fb(t) was allowed to vary not just as a function 
of condition (gain/loss), but also of the type of feedback 
(positive/negative) on each trial, allowing us to test for 
group differences on these more specific effects. Method 
specifications are outlined in the supplementary material.

FMRI Methods

Scanning took place at the Neurological Institute at 
Columbia University Medical Center on a 1.5T Philips 
Intera Scanner using an 8-channel SENSE head coil. 
Participants lay supine on the scanner bed while view-
ing images projected on a screen, and used a hand-held 
fiber optic trackball to respond to the task. T1-weighted 
structural images were acquired with an SPGR sequence 
(256 mm field of view [FOV], 200 slices, 1 mm isotropic 
voxels). Whole-brain functional EPIs were obtained at 
a 2 seconds repetition time (TR), 28 ms echo time (TE), 
77° flip angle, 192 mm FOV, 40 slices, and 3 mm isotropic 
voxels. We collected 173 volumes in each of 6 runs (3 runs 
gain/3 loss, 5 min 46 s/run).

Preprocessing procedures were carried out as described 
elsewhere42 and in the supplementary material. After pre-
processing, first-level statistical analyses using a standard 
general linear model were implemented in NeuroElf (http://
neuroelf.net/, last accessed April 15, 2016). The model 
included 4 regressors of interest including choice, com-
prised of the time interval from cue onset to button press, 
feedback, and reward outcome, which were modeled as 
stick functions and reported as 1/0 contrasts. Additionally, 
we computed a trial-by-trial and subject-by-subject para-
metric regressor for feedback PE, defined as the median 
over MCMC samples of the PE computed at each timestep 
(Since the samples are from the posterior distribution over 
the model’s free parameters, for each subject, this pro-
cedure accounts for the effects on PE of between-subject 
variation in parameters and uncertainty in their estima-
tion). Assessment of motion, data quality, and results 
concerning choice and reward outcome are discussed in 
the supplementary material. Finally, we carried out whole-
brain analyses using family-wise error (FWE) thresholds of  
P < .05 using AlphaSim48 with a smoothness estimated 

Fig. 1. Probabilistic learning task. Participants learned to predict 
gains and losses, which were probabilistically associated with cues 
in an instrumental task. A sample trial from the gain condition 
is shown for correct and incorrect choices: participants made a 
choice (triangle/square), received verbal feedback on their choice 
(“correct”/“incorrect”), and then received a monetary outcome. 
Trial structure and probabilities were identical across conditions.
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from the error term for each contrast to examine PE across 
conditions and groups.

Exploratory Analyses

Correlations between learning behavior, disease symp-
toms, and memory capacity,49 and their relationship with 
PE response in striatum and mPFC, are reported in the 
supplementary material. We also explored within-condi-
tion group contrasts to examine the direction of the inter-
action effects (figure 4).

Results

Behavioral Results

Choice reaction time (RT)50 for each group and condition 
(figures 2A and 2B) were analyzed in a 2-way ANOVA with 
group (patients/controls) and condition (gain/loss) as fac-
tors. We found a main effect of group (F1,74 = 5.02, P = .03) 
but not condition (F1,74 = 0.19, P = .66), and no interaction 
(F1,74 = 0.13, P = .72), indicating that patients were slower 
than controls across both conditions. The same ANOVA 
model was used for optimal choice (figures 2C and 2D), 
demonstrating a main effect of group, indicating that 
patients performed significantly worse overall (F1,74 = 8.44, 
P < .01), but there was no effect of condition (F1,74 = 0.01, 
P = .92) and no interaction (F1,74 = 0.01, P = .92).

Reinforcement Learning Model

We fit the free parameters of a reinforcement learn-
ing model to the trial-by-trial choices, using a MCMC 

procedure to estimate each participant’s parameters, by 
condition (gain/loss), and how these varied at the popula-
tion level as a function of disease group (table 2, supple-
mentary table 1, model 1). We found no effect of group, 
condition, or their interaction on the learning rate α 
(P = .21, P = .28, P = .48, respectively). However, we did 
find an effect of group on the softmax temperature param-
eter β (P < .001), suggesting patients were noisier in their 
choices (median β difference: −.49). There was no effect of 
condition on this parameter, nor did the groupwise differ-
ence interact with condition (P = .46, P = .75). For infor-
mation about 2 follow-up models, including trial-specific 
effects, please see the supplementary material.

Functional Imaging Results

Whole-Brain Corrected Condition-By-Group Interaction. We 
next examined correlations of BOLD activity with a trial-by-
trial PE signal generated for each subject from the fit model. 

Fig. 2. Behavioral results. For gain and loss conditions, patients demonstrated slower reaction time (A.Gain/B.Loss) and lower optimal 
choice performance scores (C.Gain/D.Loss) relative to controls.

Table 2. Behavioral Data (Credible Intervals on Model 
Parameters [CI] With Bayesian P-values for the Model 
Parameters and Their Interaction With Group and Condition)

Behavioral Results (Model) Lower CI Upper CI P

α*Group −1.67 0.68 .21
α*Condition −2.71 1.78 .28
α*Group*Condition −1.29 1.27 .48
β* Group −0.68 −0.21 <.001
β* Group*Condition −0.18 0.37 .75
β* Condition −0.51 0.63 .46
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A whole brain corrected (FWE P < .05) condition-by-group 
interaction analysis (PE on gain>loss, controls>patients; 
figure 3, supplementary table 3) revealed several significant 
clusters, including 1 in the left medial temporal lobe (MTL; 
peak −42, −21, −9, t-max = 4.93, k = 829) extending into 
hippocampus and parahippocampal gyrus (−42, −33, −6, 
t-max = 3.31, k = 62). We also found a significant effect in 
the right temporal lobe (peak 27, 12, −36, t-max  =  4.20, 
k = 571) and the striatum (local maxima in putamen: 18, 3, 
0, t-max = 4.06, k = 42; and ventral striatum/caudate: 3, 9, 
−3, t-max = 3.54, k = 71), as well as in precuneus (12, −51, 
39, t-max = 4.39, k = 472) extending to posterior cingulate (9, 
−36, 21, t-max = 4.20, k = 23), and in precentral gyrus (30, 
−15, 30, t-max = 3.50, k = 508), extending to middle frontal 
gyrus (30, −6, 39, t-max = 3.37, k = 24) and postcentral gyrus 
(42, −27, 36, t-max = 3.22, k = 58).

Exploratory Analyses

We next unpacked this analysis to explore group dif-
ferences separately within each condition (gain vs loss; 
supplementary figure 3). In the gain condition, a direct 
group contrast of  feedback PE revealed significantly 
greater PE-related activation in the controls than the 
patients in several clusters. The first was found in medial 
frontal gyrus (−15, 3, 66, t-max = 5.37, k = 11 752), pre-
cuneus (9, −51, 39, t-max = 5.33, k = 270), MTL (−21, 
−21, −9, t-max = 4.20, k = 99), posterior cingulate, (12, 

−60, 12, t-max = 4.06, k = 91), and culmen (−6, 69, −9, 
t-max = 4.20, k = 123). The second extended from lat-
eral (−33, 63, 0, t-max = 4.57, k = 669) to medial PFC 
(−6, 63, −12, t-max  =  4.05, k  =  125; figure  4). In the 
loss condition, 1 cluster across cerebellum (−42, −57, 
−27, t-max  =  4.35, k  =  1412), cuneus (0, −78, 39, t-
max = 4.14, k = 148) and occipital lobe (−30, −90, −12, 
t-max = 3.84, k = 77) survived correction. In contrast to 
the gain condition, although no significant group differ-
ence was seen for the loss condition in mPFC (figure 4), 
the 2-way interaction reported above was not significant 
in this region.

We did not find any significant relationships between 
negative symptoms and learning or memory perfor-
mance, or in PE response in striatum or mPFC. Details 
and statistics pertaining to these analyses are reported in 
the supplementary material.

Discussion

The findings of the present study demonstrate for the first 
time that unmedicated patients with schizophrenia show 
blunted PE responses relative to controls in brain regions 
including the striatum, mPFC, and MTL in the context 
of predicting gains, but not losses. However, no corre-
sponding behavioral effects of gain vs loss condition or 
condition-by-group differences were detected, a negative 
result we return to below. Nevertheless, although blunted 

Fig. 3. Condition-group interaction. Interaction results (gain>loss, controls>patients) for prediction error (PE)-related BOLD responses 
to feedback are shown at a corrected threshold (whole-brain family-wise error [FWE] P < .05). Regression weight plots from clusters in 
(A) left medial temporal lobe and (B) right putamen are shown to demonstrate the direction of the interaction, and not for statistical 
inference.
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reward response has been demonstrated in unmedicated 
patients,26,35–37 these findings suggest that deficits in PE 
signaling in patients exist when motivated by rewards, 
indicating that motivational context modulates the 
engagement of neural systems supporting reinforcement 
learning in schizophrenia.

These data are noteworthy as prior research has impli-
cated antipsychotic treatment as a potential mecha-
nism contributing to deficits in reward PE.30,34 However, 
because all patients in this study were unmedicated, these 
findings instead suggest that D2R blockade via pharma-
cological means is not the primary driving factor under-
lying the neural mechanism for blunted appetitive and 
intact avoidant learning signals. Rather, it is likely that 
the deficit specific to learning to predict positive out-
comes may be characteristic of the disease itself.

The literature concerning the relationship between 
medication and reward learning deficits in schizophre-
nia has been mixed, and has been confounded with med-
ication type and demographic factors. Antipsychotic 
medications, and specifically D2R antagonism, can 
attenuate responses to positive PEs and enhance learn-
ing from negative PEs.29,30,39,51 Some typical antipsychot-
ics are used at doses that achieve high D2 occupancy,52 
and are associated with greater deficits in PE signal-
ing than atypical medications, further implicating this 
mechanism in reward PE blunting.39,53–55 Differences in 
predicting rewards vs losses have been reported largely 
in medicated patients,8–11,28 but while some studies have 
shown dose-related learning trends,27 others demon-
strated no relationship.22 Imaging studies including 
unmedicated participants, however, reported an overall 
attenuation of  PE response in the striatum,26,35,36 and 
1 mixed finding related to negative PE in mPFC and 
striatum.37 Thus, while the present data cannot rule out 
the possibility that medication can exacerbate these 
valence effects, the cumulative evidence suggests that 
reward-specific PE abnormalities in schizophrenia may 
exist independent of  medication status. Future studies 

incorporating controlled comparison across medica-
tion status will be necessary to fully address this issue.

Several mechanisms have been proposed to underlie 
reward-specific learning deficits. For example, learning 
from positive and negative outcomes is thought to be 
related to the direct and indirect pathways in the basal 
ganglia that are modulated by D1 and D2 receptors, 
respectively,10,29 and provide a framework by which D2R 
blockade by antipsychotics facilitate learning30 from neg-
ative outcomes in schizophrenia. In patients, we observed 
lower β values, consistent with a noisier and qualitatively 
different pattern of choice behavior, which appeared to 
substantially reflect a blunted behavioral response to 
positive feedback, supporting prior findings.8,11 The iden-
tification of deficits on the level of trial and condition 
in schizophrenia implies there may exist abnormalities 
on multiple temporal levels, potentially attributed to 
disrupted trial-level feedback responses due to aberrant 
dopamine signaling,13 and sustained value computation 
abnormalties mediated by tonic signals.56,57 Consequently, 
understanding these processes is an important direction 
in schizophrenia research.

An important caveat to the finding of neural effects of 
condition is that the differences reported did not have any 
detectable behavioral counterpart in terms of differences 
in patients’ choice or RT performance between conditions. 
While one should be cautious interpreting neural effects 
in the absence of a corresponding behavioral effect, these 
neural results seem plausible in the context of the strong 
previous literature on these issues, suggesting the failure 
more likely concerns our behavioral measures. One pos-
sible reason for the lack of behavioral effects is that these 
patients were generally impaired in their learning perfor-
mance, which may have masked more selective differences 
across the gain vs loss conditions. Another possibility is 
that this task was not sensitive enough to identify con-
dition-specific behavioral differences; indeed, no main 
effect of condition was found within the control group 
alone (though this need not be a prerequisite for finding 
condition effects in patients). Prior reports of condition 
effects have employed paradigms that required frequent 
contingency updating.28 Instead, the present task used 
a static 70/30 contingency to ensure participants could 
learn well enough to acquire a cue-specific value expecta-
tion before it can be violated, creating a PE for use with 
fMRI. Future studies should consider using tasks with 
dynamic contingencies, which may be more sensitive to 
reinforcement learning deficits.

The PE BOLD response we found in controls was con-
sistent across conditions with results of  meta-analyses 
examining PE and value.17,58 Patients, though, showed 
this pattern in the loss but not gain condition, even dem-
onstrating a negative relationship with PE in striatum 
and MTL. This points to a characteristic difference in 
how patients process stimuli warranting an approach or 
avoidance response. In fact, affective and motivational 

Fig. 4. Corrected condition-specific group differences. A whole-
brain corrected (family-wise error [FWE] P < .05) contrast 
for controls>patients on prediction error (PE)-related BOLD 
responses to feedback showed a difference in medial prefrontal 
cortex in the gain condition. No such difference was significant in 
the loss condition.
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states can modulate PE responses in rewarding59 and 
aversive contexts.60 For example, the role of  the stria-
tum has been established in rewarding1 and aversive 
learning,61–64 but key functional differences may exist, 
ranging from anatomical segregation within its subdivi-
sions65,66 to interactions with particular learning systems, 
such as amygdala67 based on learning type and context. 
Further, tasks involving altered motor responses based 
upon framing have demonstrated differences in striatal 
recruitment.68,69 Thus, understanding how neural learn-
ing signals differ depending upon response context may 
elucidate mechanisms underlying blunted reward-spe-
cific responses in schizophrenia.

Exploratory analyses revealed effects of condition and 
group in regions outside of the striatum and mPFC, such 
as in cingulate, MTL, and cuneus (figure  3), for which 
several interpretations exist. Salience and value responses 
have been demonstrated in cuneus70 and posterior cin-
gulate.17 Further, response in posterior cingulate may be 
linked specifically to the representation of positive value17 
and attenuation of response to incentive value in this 
region has been implicated in psychosis.71 Additionally, 
the MTL is subject to modulation by dopamine and 
rewards,72 both of which affect mnemonic and cognitive 
processes related to motivation and decision making in 
healthy participants73 and patients with schizophrenia.74 
Given known hippocampal abnormalities in schizophre-
nia75 and importance of the posterior cingulate in reward-
specific incentive salience, these findings suggest that 
reward-modulated cognitive processes in these regions 
should be investigated in future studies.

One limitation of this study stems from the difficulty 
in recruiting medication-free patients, as only a limited 
number of patient participants were tested. Additionally, 
while our modeling analyses fit both groups better than 
chance, the controls showed a better fit than patients. 
This may simply reflect the underlying behavioral find-
ing—ie, that patients’ behavior is less driven by (and 
therefore less predictable based on) the task feedback, 
and ultimately noisier. However, it is possible an alterna-
tive model exists which might better account for patient 
behavior. Importantly, because the current task does not 
involve a transfer phase to distinguish choices driven by 
learned action preferences (“policies”) vs reward predic-
tions, the actor–critic model (which has been suggested to 
be a better structural account of learning in schizophrenia 
in some circumstances8) behaves similar to the Q-learning 
model used here. Indeed, behavioral fits using an actor-
critic model (results not shown) did not detectably differ 
in either group. Future studies should employ transfer 
phases or other manipulations to address this question 
in unmedicated patients across motivational contexts, 
and symptom profiles. Also, given that about half of our 
patient sample had prior exposure to antipsychotic medi-
cations, it is important to consider the possibility that—
despite these and other36 findings—prior antipsychotic 

use may exert long-term effects on the brain, although 
this concern is mitigated by the absence of observed dif-
ferences in PE between medication-naïve and medication-
free patients (see the supplementary material). Finally, it 
is important to acknowledge that medication use is often 
correlated with disease severity. In prior studies, patients 
on high medication doses may have had more severe 
symptoms, confounding results.

To summarize, this study suggests that neural learning 
signals are processed differently in patients with schizo-
phrenia dependent upon the motivational context of the 
task. These data indicate that patients may have a selective 
neural learning signal deficit when motivated to pursue 
rewards compared to avoid losses, which may be a disease 
characteristic, and not solely attributable to antipsychotic 
use. Along with a larger body of evidence, these findings 
confirm abnormalities of reward-motivated processing in 
schizophrenia and warrant continued investigation of this 
deficit and its relationship to disease symptoms.

Supplementary Material

Supplementary material is available at http://schizophre-
niabulletin.oxfordjournals.org.
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