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Delusions are rigid beliefs held with high certainty despite contradictory evidence. Notwithstanding decades of
research, we still have a limited understanding of the computational and neurobiological alterations giving rise
to delusions. In this review, we highlight a selection of recent work in computational psychiatry aimed at devel-
oping quantitative models of inference and its alterations, with the goal of providing an explanatory account for
the form of delusional beliefs in psychosis. First, we assess and evaluate the experimental paradigmsmost often
used to study inferential alterations in delusions. Based on our review of the literature and theoretical consider-
ations, we contend that classic draws-to-decision paradigms are not well-suited to isolate inferential processes,
further arguing that the commonly cited ‘jumping-to-conclusion’ bias may reflect neither delusion-specific nor
inferential alterations. Second, we discuss several enhancements to standard paradigms that show promise in
more effectively isolating inferential processes and delusion-related alterations therein. We further draw on
our recent work to build an argument for a specific failure mode for delusions consisting of prior overweighting
in high-level causal inferences about partially observable hidden states. Finally, we assess plausible neurobiolog-
ical implementations for this candidate failuremode of delusional beliefs and outline promising future directions
in this area.

© 2021 Published by Elsevier B.V.
Delusions are classically defined as false beliefs held with high
certainty despite contradictory evidence. They are one of two defin-
ing symptoms of schizophrenia, the other being hallucinations. Delu-
sions typically accompany schizophrenia and are common in other
psychotic disorders, often producing immense disruption in the
lives of the patients who suffer from them (Heinze et al., 2018;
Upthegrove, 2018).

In one famous example, a bright and well-regarded young mathe-
matician became increasingly convinced that he had the unique ability
to decipher a secret code embedded in newspapers. He gradually devel-
oped an unyielding belief that solving this code was necessary to save
humanity and that a vast conspiracy had formed to stophim.Ultimately,
this belief consumed much of his life, in spite of persistent efforts from
relatives, friends, and others to convince him that his belief was un-
founded. Afraid for his life, he left behind his job, family, and country
(Nasar, 1998).

This case illustrates the tragic, real-life consequences of delu-
sional beliefs as well as their classic features: falsity, certainty,
and rigidity. Of these, the necessity of belief falsity for the
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operationalization of delusions was questioned from its conception
by Karl Jaspers (Jaspers, 1913), who emphasized the clinical value
of the form over the content of psychotic experiences such as delu-
sions. Jaspers made this point describing thememorable case of a de-
lusion of jealousy in which the patient's partner was actually
unfaithful. Difficulties ascertaining belief falsity are now broadly rec-
ognized to limit its clinical value. Additionally, challenges associated
with the interpretation of beliefs in different cultural or experiential
contexts, which are also key determinants of delusional themes, fur-
ther call the definitional value of delusion content into question
(Aschebrock et al., 2003; Gaines, 1995; Gold and Gold, 2012;
Spitzer, 1990; Stompe et al., 2003). The variability and intractability
of belief content is reflected by current operationalizations of delu-
sions, which exclusively focus on belief form. The DSM-5 defines de-
lusions as: “fixed beliefs that are not amenable to change in light of
conflicting evidence […]. The distinction between a delusion and a
strongly held idea […] depends in part on the degree of conviction
with which the belief is held despite clear or reasonable contradictory
evidence regarding its veracity” [italics added by authors (American
Psychological Association, 2013)]. Therefore, two essential formal
features are necessary for beliefs to be considered delusional:
(1) high subjective certainty (i.e., beliefs held with high conviction)
and (2) belief rigidity (i.e., fixed beliefs resistant to change).
ethinking delusions: A selective review of delusion research through a
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In this review, we will highlight recent work in computational
psychiatry aimed at developing quantitative inference models de-
scribing the form of delusional beliefs in psychotic disorders, with
special attention to those that might capture their two core fea-
tures—high certainty and rigidity. Other reviews provide a broader
review of the neurocognitive literature on delusions (Corlett et al.,
2010). Here, we focus more narrowly on inference for two reasons.
First, it bears historical relevance to the definition of delusions;
e.g., the DSM-III defined delusion as “a false personal belief based
on incorrect inference about external reality […]” [italics added by
the authors (American Psychological Association, 1980)]. Second,
and more importantly, inferential models deal with the formation
of beliefs on the basis of observed evidence and past knowledge, a
process that has been long theorized to be central to the genesis of
delusions and one that is experimentally tractable. To begin, we
first describe the mathematical foundations for models of inference.

1. A primer on Bayesian inference

Inference is generally defined as a method of logical reasoning in
which one draws conclusions based on a set of premises. In
abductive inference, a particular type of inference presumed to be
relevant to delusions, one produces a best-guess explanation for a
phenomenon based on available information (Coltheart et al.,
2010). Statistically, inference similarly refers to the estimation of
the amount of evidence in support of an explanatory hypothesis
based on samples of information.

Bayesian inference is a method for probabilistic computation that
optimally combines prior knowledge with new information. The
resulting estimates are statistically optimal in that, on average, they
maximize prediction accuracy. Estimates in Bayesian inference are
framed in probabilistic terms as beliefs reflecting the intuited probabili-
ties of different hypotheses under consideration, which are updated
through the incorporation of new samples of information. This process
of belief updating is summarized in Bayes' theorem (Eq. 1). Here, the
prior belief represents previously acquired knowledge, the likelihood re-
fers to the evidence provided by a new piece of information, and the
posterior belief refers to the new or updated belief. In this formula, the
posterior belief, P(A|s), the probability of hypothesis A after observing
a sample of information s, is estimated as a function of the prior belief,
P(A), or the probability of hypothesis A before observing s, and the like-
lihood, P(s|A), the probability of s if hypothesis A were true (the
strength of the evidence of sample s in support of hypothesis A), divided
by a normalization factor.

P Ajsð Þ ¼ P Að Þ � P sjAð Þ
P sð Þ ¼ P Að Þ � P sjAð Þ

P Að Þ � P sjAð Þð Þ þ P Bð Þ � P sjBð Þð Þ ð1Þ

To illustrate the intuition behind this equation, consider a hypothet-
ical scenario where John, unable to find an important document he
saved in a shared computer, suspects that a co-worker may have inten-
tionally deleted it to sabotage his work. John knows of previous similar
events in their company, which promotes fierce competition between
co-workers. Given this document loss (s), should John conclude his
co-worker intentionally sabotaged him (hypothesis A) or that it was
an accident (hypothesis B)? Based on his prior knowledge, John con-
siders the a priori probability of a co-worker trying to sabotage him [P
(A)] to be moderately low, about 0.2. But his meticulous bookkeeping
makes this document loss a very rare event, so he considers it strong ev-
idence for sabotage, with a likelihood [P(s|A)] of about 0.75. Applying
Bayes' theorem to optimally combine the prior beliefs [P(A) = 0.2; P
(B) = 0.8] and likelihoods [P(s|A) = 0.75; P(s|B) = 0.25] would lead
John to reach the posterior belief that the probability he was sabotaged
is: P(A|s) = (0.2 · 0.75)/((0.2 · 0.75) + (0.8 · 0.25)) = 0.43.

Bayesian inference over two complementary hypotheses can be
reframed as the computation of their log odds (Eq. 2), rather than in
2

terms of the raw probabilities. A formulation of Bayes' theorem in this
logit space (Eq. 3) shows that inference reduces to an additive process,
akin to that observed in the activity of neuronal populations involved
in perceptual decisions (Gold and Shadlen, 2007).

log
P Ajsð Þ
P Bjsð Þ

� �
¼ log

P Að Þ
P Bð Þ

� �
þ log

P sjAð Þ
P sjBð Þ

� �
ð2Þ

logit posteriorAð Þ ¼ logit priorAð Þ þ logit likelihoodAð Þ ð3Þ

logit posteriorAð Þ ¼ ω1 � logit priorAð Þ þω2 � logit likelihoodAð Þ ð4Þ

Parameterizing this logit formulation via a prior weight ω1 and a
likelihood weight ω2 (weighted Bayesian model; Eq. 4) makes ap-
parent that the Bayesian recipe for optimally combining prior beliefs
and likelihoods consists of giving them an equal weight of 1 (ω1 =
ω2 = 1). This common parameterization (Ambuehl and Li, 2018;
Benjamin et al., 2019) also conveniently captures specific classes of
deviations from optimality, since either the prior or the likelihood
terms could theoretically be over- or under-weighted with respect
to the ideal Bayesian benchmark. In the example above, for instance,
John could have partially discounted his prior knowledge (ω1 < 1),
which would have led him to erroneously overestimate the posterior
probability that he was being sabotaged (e.g., an ω1 = 0.5 would
produce a posterior belief P(A| s) = 0.60 for sabotage).

In sum, Bayesian inference can be used as a formal framework to
quantify inference in terms of probabilistic beliefs. Critically, this
framework provides an objective benchmark that empirical data
can be measured against in order to examine deviations from opti-
mality and interindividual variability in different elements of the in-
ference process.

2. Brief summary of inferential theories of delusions

Although the general notion that delusions stem from alterations
in reasoning was inherent to early clinical conceptualizations, it was
Hemsley and Garety who proposed framing delusional beliefs as de-
viations in specific aspects of optimal Bayesian inference (Hemsley
and Garety, 1986). They did not hypothesize a single alteration at
the core of delusion formation and maintenance. Rather, they
catalogued a bounty of potential deviations at the level of the differ-
ent variables comprising the Bayesian algorithm that, mostly based
on clinical intuition, could be reasonable candidates for explaining
some aspects of delusional ideation. Their seminal proposal built
on prior work (Fischhoff and Beyth-Marom, 1983) which similarly
catalogued deviations from optimal inference as candidate mecha-
nisms for explaining a variety of biases in judgment and decision-
making that are commonly observed in the general, healthy popula-
tion. They argued that variations in these biases could explain the
characteristic resistance of delusional beliefs to disconfirmatory evi-
dence, or their rigidity, as well as the characteristic high certainty
with which the beliefs are held. Among the list of possible deviations
that Hemsley and Garety (1986) considered was an alteration in the
weighting of prior beliefs—captured by the parameter ω1 in Eq. (4)—
noting that “deluded patients frequently tell interviewers that they
have never considered the possibility of the falsity of their beliefs.”
As another candidate, they suggested a ‘confirmation bias’ whereby
beliefs might be more responsive to new information consistent
with prior beliefs relative to information inconsistent with them
(or, equivalently, disproportionate weighting of the numerator in
the likelihood ratio in Eq. (2) if A corresponded to the more likely a
priori hypothesis). By focusing on deviations in specific parameters
weighting the variables comprising a relevant algorithm and linking
them to clinical phenomena, a concept commonly termed ‘failure
modes’ in the burgeoning field of computational psychiatry (Redish
et al., 2008; Walters and Redish, 2018), this work provided an



1 Wefirst obtain Eq. (8) from Eq. (5) via the substitution of a rearranged Eq. (7), namely
ω1′=1−ω2′. Wemay then use Eq. (8) to examine the Bayesian update as the difference:

μposterior−μprior ¼ 1−ω0
2

� � � μprior þ ω0
2 � s

� �
−μprior

Distributing and canceling the extraneous μprior terms gives:

μposterior−μprior ¼ μprior− ω0
2 � μprior

� �
þ ω0

2 � s
� �

−μprior

μposterior−μprior ¼ ω0
2 � s

� �
− ω0

2 � μprior

� �

A simple reorganization of the above ω2′ terms then yields the desired result in Eq. (9).
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influential framework for understanding delusions in terms of con-
crete alterations in Bayesian inference.

Crucially, the notion of delusion-related alterations in inference
does not imply that healthy individuals are unbiased Bayesians
(e.g., exhibiting ω1 = ω2 = 1) and only delusional patients exhibit
some distinct biases (e.g., ω1 ≠ ω2 ≠ 1). That is, “normal” inference
in the healthy population does not necessarily correspond to optimal
inference. Indeed, this notion built upon research showing common
biases among healthy individuals that suggest deviations from opti-
mal Bayesian inference (Fischhoff and Beyth-Marom, 1983), includ-
ing the underweighting of prior information (ω1 < 1; Bar-Hillel,
1980; Benjamin, 2019; Kahneman and Tversky, 1973) and distor-
tions in the incorporation of likelihoods (Gonzalez and Wu, 1999).
Hemsley and Garety instead adopted a more dimensional view
under which delusions could be driven by quantitative differences
in the same kinds of deviations from optimality exhibited by healthy
individuals (Hemsley and Garety, 1986).

Motivated by the known hierarchical organization of the brain
and the hierarchical nesting of information in the environment,
modern theories of information processing in the brain tend to con-
ceptualize inference as a hierarchical process. Accordingly, modern
theories of delusions focus on alterations in hierarchical inference
(Adams et al., 2013; Fletcher and Frith, 2009; Friston, 2008; Sterzer
et al., 2018). Hierarchical-inferencemodels comprise multiple, inter-
dependent levels of processing, with lower levels supporting infer-
ences on less abstract processes, like perception of the low-level
features of sensory stimuli (e.g., the color of a tree leaf), and higher
levels supporting inferences on increasingly abstract concepts, such
as estimation of the underlying—hidden—states generating the ob-
served stimuli and the processes that govern the variability in
these hidden states (e.g., the seasons of the year). Similar to the
existing feedforward and feedback connections between brain re-
gions, levels are interconnected through bottom-up connections
sending information from lower to higher levels and top-down con-
nections sending information from higher to lower levels. Critically,
this message-passing between levels allows hierarchical inference
to combine information across levels (e.g., predicting that tree leaves
will turn red by incorporating higher-level, contextual prior knowl-
edge that the Fall has arrived). Although different hierarchical-
inference models exist that vary in the exact implementation of
message-passing between levels and in their overall architecture,
these models are conceptually and algorithmically similar. Of these,
two are most relevant to delusions and schizophrenia: generalized
predictive coding, here understood broadly to encompass active in-
ference and related models (Adams et al., 2013; Friston et al., 2016;
Smith et al., 2020), and belief propagation (Jardri and Denève,
2013). We present a simplified explanation of their differences
below.

Generalized predictive-coding models posit that the key signal for
belief updating at each level of the hierarchy is a weighted prediction
error (PE). The level-specific prediction error reflects the difference be-
tween a top-down signal encoding a prior expectation conveyed from
the level above and the bottom-up input from the level below. Impor-
tantly, this prediction error is scaled based on the relative uncertainties
of the top-downprior expectation and the bottom-up signal to favor the
less uncertain—or the more reliable—of these two sources of informa-
tion. This relates to the concept of Bayesian cue combination (Daw,
2014; Knill and Pouget, 2004), which is apparent when examining
Bayesian inference on themean, μ, of an underlying continuous variable
based on an observed stimulus s (representing a sample of the underly-
ing variable corrupted by Gaussian noise):

μposterior ¼ ω0
1 � μprior þω0

2 � s ð5Þ

Here, the prior weight ω1′ and the weight on the sensory observa-
tion ω2′ reflect the optimal weighting, which here is not fixed for each
3

individual variable but instead depends on their relative uncertainties
or variances σprior

2 and σs
2, such that the two weights add up to 1.

ω0
1 ¼ σ2

s

σ2
s þ σ2

prior
ð6Þ

and

ω0
2 ¼

σ2
prior

σ2
s þ σ2

prior

; ð7Þ

where ω1′ + ω2′ = 1.
Given that the magnitude of a belief update is the difference be-

tween the new, updated belief and the previous one (μposterior − μprior),
we can rearrange1 Eq. (5) to show that this Bayesian belief update is
driven by weighted prediction errors (ω2′ · PE), or the difference be-
tween the observed stimulus s and its expectation μprior scaled by the
weight on the sensory observation ω2′.

μposterior ¼ 1−ω0
2

� � � μprior þ ω0
2 � s

� � ð8Þ

μposterior−μprior ¼ ω0
2 � s−μprior

� �
¼ ω0

2 � PE ð9Þ

In generalized predictive-codingmodels, theweighting of prediction
errors at a given level is therefore the key variable controlling belief up-
dates at that level.Within the active inference framework, this weight is
adjusted by estimates from higher levels about the variability of the un-
derlying generative process, with the ultimate goal of minimizing sur-
prising outcomes (i.e., by optimizing predictions and acting to
minimize surprise) to maintain long-term homeostasis (Friston,
2010). Misestimating the underlying process to be less variable than
warranted (e.g., underestimating its volatility), will modify the weight
of prediction errors, and belief updating, in lower levels. Under this
framework, delusions are proposed to ultimately result from excessive
weighting of high-level prior beliefs (as if a high-level ω1′ is
overweighted; Adams, 2018; Adams et al., 2014; Adams et al., 2013).
However, this is framed as a secondary, state-dependent compensation
for a core alteration consisting of overweighting of sensory evidence at
the lower levels (as if a low-level ω2′ is overweighted). Initially this al-
teration causes large fluctuations in beliefs, possibly boosting bottom-
up salience of irrelevant sensory stimuli in line with theories of salience
misattribution (Corlett et al., 2009; Fletcher and Frith, 2009; Heinz et al.,
2019; Kapur, 2003; Sterzer et al., 2018). But the system's tendency to-
wards minimizing surprise leads to a compensatory overweighting of
high-level prior beliefs, which eventually stabilizes beliefs.

In the belief propagationmodel (Denève and Jardri, 2016; Jardri and
Denève, 2013; Leptourgos et al., 2017), in contrast, logit beliefs are iter-
atively updated based on logit likelihoods reflecting the strength of the
evidence at a given level, with increasing levels representing beliefs
about broader concepts (e.g., green → leaves → trees → forest). Criti-
cally, the top-down and bottom-up connections between levels are
governed by independent self-inhibitory processes, presumed to de-
pend on distinct subpopulations of inhibitory (GABAergic) interneu-
rons. An adequate level of inhibition prevents reverberation of
messages (i.e., the same message being sent multiple times) reflecting
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either bottom-up sensory evidence or top-down prior beliefs. In turn,
disruptions in the inhibitory processes, hypothesized to derive from al-
terations in excitation-to-inhibition balance in schizophrenia, lead to al-
terations in inference characterized by overcounting messages. This
scenario is termed ‘circular inference’. Bottom-up disinhibition leads
to reverberation or overcounting of sensory evidence, which effectively
implements a type of overweighting of sensory evidence; top-downdis-
inhibition leads to reverberation or overcounting of prior beliefs, which
effectively implements a type of overweighting of prior beliefs. In the
short run, circular inference was shown to explain excessive belief cer-
tainty in the face of weak sensory evidence. In the long run, circular in-
ference captured the development of strong and certain probabilistic
associations between higher-level and lower-level constructs when
these were actually unrelated and only weak evidence supported their
association. The circular-inference model produces delusion-like condi-
tional beliefs—false, overly certain, and rigid—only in ambiguous situa-
tions, which was proposed to explain the persecutory nature of
delusions given the high inherent uncertainty of social inferences (rela-
tive to lower-level perceptual inference). Although Jardri and Denève
(2013) suggested that bottom-up or top-down disinhibition could be
consistent with different behaviors observed in schizophrenia, invoking
in part the beads-task literature (see below), they proposed that psy-
chotic symptoms such as delusions primarily originate from bottom-
up disinhibition leading to overcounting of sensory evidence.

3. Empirical findings and gaps in the literature on inferential alter-
ations in delusions

The inferential models of delusions described above inspired a sub-
stantial body of work aimed at empirically testing model predictions
to isolate the cognitive and computational mechanisms underlying de-
lusions in schizophrenia-spectrum disorders. Reframed in
computational-psychiatry terms, the ultimate goal of this effort is to
identify the failure mode(s) in inferential processes that give rise to de-
lusions. This goal requires the ability to isolate interindividual variability
in behaviors which can be selectively attributed to altered inferential
processes and subprocesses, rather than to broader cognitive deficits
such as those typically seen in schizophrenia (e.g., global neurocognitive
deficits in workingmemory, verbal memory, and processing speed gen-
erally unrelated to positive symptoms like delusions) or other general
factors associated with the illness (e.g., chronicity, institutionalization
or hospitalization, socioeconomic conditions, medication, co-morbid
psychiatric and medical conditions). So, can we do this?

The most prolific experimental paradigm in empirical studies of in-
ference in schizophrenia is the “beads task” (also known as the “urn
and beads task”), itself an instantiation of the so-called “bookbag and
poker-chip” experiments (Benjamin, 2019). Based on Hemsley and
Garety's theoretical framing for delusions, Huq et al. (1988) conducted
the first experiment using the beads task in schizophrenia. In their
task, participants were shown two jars filled with a mixture of colored
beads, with the majority color defining the identity of the jar (jar A:
85% beads of color a, 15% beads of color b; jar B: 85% beads of color b,
15% beads of color a). Next, the jars were hidden, and participants
were informed that one of the jars would be chosen at random with
equal probability. Participants were presented with one bead at a time
from the chosen jar (randomly drawn from the jar with replacement)
and after each beadwas presented, participants could guess the identity
of the chosen jar (jar A or jar B) or request another bead. With
Eqs. (1) and (2) as a reference, it should now be straightforward to
see how this task was designed to capture a process of causal inference
on hidden states (the hidden jars): here, the observed color of the bead
at a given draw provides an information sample s (where s can take on
colors a or b) used to update beliefs about the identity of the chosen jar
[P(A|s) or P(B|s)], which according to Bayes' theorem should depend on
the prior belief before observing this bead [P(A) or P(B)] and the likeli-
hood or strength of the evidence supporting each jar [in this case, P
4

(a|A) = 0.85 and P(b|A) = 0.15 for jar A, and vice versa for jar B]. The
main behavioral measures in this beads task were draws-to-decision,
the total number of beads requested beforemaking a final guess, and re-
ported probability estimates of the chosen jar being A or B elicited after
each bead draw (a subjective estimate of the posterior belief of the cho-
sen jar). No method to incentivize reporting of true beliefs or prefer-
ences was used. Task behavior was obtained from 15 participants
diagnosedwith schizophrenia and active, severe delusions, 10 psychiat-
ric controls without a diagnosis of schizophrenia andwithout delusions,
and 15 healthy controls. The main results were that patients with
schizophrenia requested fewer beads before making a guess relative
to both control groups, i.e., they exhibited reduced draws-to-decision,
and tended to report higher probability estimates for the chosen jar
after seeing only one bead. The reduction in draws-to-decision in
schizophrenia was later dubbed the “jumping to conclusions” bias
(Dudley et al., 1997a, 1997b) and has been broadly replicated in subse-
quent research, as discussed below. Setting the stage for laterwork, Huq
et al. evaluated these behavioral results against the Bayesian-inference
benchmark described above and put forward the influential interpreta-
tion that patients with delusions tended to overweight the evidence as-
sociated with the bead samples. Concretely, the authors argued that
patients with delusions were less susceptible to conservatism bias,
which can be defined as the underweighting of the likelihood (i.e., as
if the likelihoodweightω2 in Eq. (4)was relatively greater in the schizo-
phrenia patient group than in the control groups). This interpretation
was supported by higher reported probability estimates after the first
bead in patients with delusions, suggesting at least a relative
overweighting of the likelihood. The authors also took the decrease in
draws-to-decision to support this interpretation, assuming that more
certain posterior beliefs (i.e., estimated probabilities closer to
1) would increase the probability of patients venturing a guess.

While compelling, this work stopped short of pinpointing a specific
link between delusions and inferential alterations. Despite their laud-
able efforts to isolate delusional processes, the active delusions group
in Huq et al. conflated delusions with active psychotic symptoms and
with a diagnosis of schizophrenia, precluding the attribution of any
group differences to delusions specifically. Furthermore, they did not
discuss or rule out alternative explanations apart from inferential alter-
ations, such as disproportionate effects in their active patient group of
general cognitive deficits (e.g., broader, non-specific neurocognitive
deficits that could interfere with performance on this task, as they do
with a variety of other tasks) or other motivational determinants to
stop sampling.

After the seminal work by Huq et al., the beads task became a
widespread paradigm in studies on inference and delusions
(Dudley et al., 2016; McLean et al., 2017; Ross et al., 2015), which
heavily focused on draws-to-decision as a convenient measure of
presumed relevance to inferential processes. Many of these subse-
quent studies have used the classic version of the task, with little or
no modifications from Huq et al.'s task, although a common variant
includes a memory aid indicating previous bead draws within a
trial to control for potential working-memory confounds (Dudley
et al., 1997b). Notably, these experiments typically included very
few trials of the beads task—only 1 or 2 trials per likelihood condition
in many cases—and often reused the same sequences from previous
studies. Three recent meta-analyses have summarized this
large body of work. In general, studies consistently find that patients
with schizophrenia tend to exhibit the jumping-to-conclusions bias,
characterized by decreased draws-to-decision compared to healthy
or psychiatric controls. But critically, these meta-analyses do not
provide clear evidence for a specific link to delusions. One of these
meta-analyses (Dudley et al., 2016) found no evidence of differences
in jumping-to-conclusions bias when comparing patients with
schizophrenia who had active delusions to those who did not have
active delusions after controlling for study quality and other factors.
Another meta-analysis (McLean et al., 2017) did find group



Box 1
Potential non-inferential factors accounting for the jumping-to-conclusions bias in schizophrenia.

In different sections of this paper, we discuss non-inferential factors that likely contribute to the common finding of decreased draws-to-deci-
sion in schizophrenia. These factors stand in contrast with the genuine and concrete alterations in causal inference that we hypothesize to un-
derlie delusions—specifically, overweighting of prior beliefs in higher-level inference on hidden states. Here,we summarize these non-inferential
factors and suggest concrete approaches tominimize or account for their contributions to sampling decisions such as those determining draws-
to-decision behavior.
– Broader cognitive deficits that may generally interfere with task construal and performance. Broad neurocognitive deficits in schizophrenia
(Fioravanti et al., 2005; Habtewold et al., 2020; Luck et al., 2019) include deficits in motivation (Green et al., 2012; Nakagami et al., 2008;
Takeda et al., 2017), working memory (Forbes et al., 2009; Griffiths and Balzan, 2020), longer-term memory (Guo et al., 2019), and goal-di-
rected planning (Siddiqui et al., 2019). Impaired performance on an information-sampling task may thus simply result from inability to compre-
hend or retain task rules and instructions (Balzan et al., 2012a; Balzan et al., 2012b; Ross et al., 2015), insufficient task engagement (e.g., due
to motivational deficits or misunderstanding), anxiety (Lincoln et al., 2010a) or feeling rushed (White and Mansell, 2009) (e.g., due to aware-
ness of cognitive deficits), amongother factors. Cognitive deficits, including low IQ (Tripoli et al., 2020),workingmemory (Broome et al., 2007;
Freeman et al., 2014; Garety et al., 2013), and generally poor performance on neuropsychological testing (Andreou et al., 2015; Falcone et al.,
2015; González et al., 2018; Lincoln et al., 2010b), have been shown to explain some or all the variance in draws-to-decision (or discrete pres-
ence of the jumping-to-conclusions bias) associated with a diagnosis of schizophrenia. A trivial explanation for reduced draws-to-decision in
schizophrenia could be that the default strategy of a participant experiencing miscomprehension, forgetting, and/or anxiety is to terminate
the task as early as possible (e.g., to alleviate the discomfort associatedwith anxiety and confusion). It is also possible that these factors further
compound the value-based decision-making factors discussed below. Tominimize the contribution of broader cognitive deficits, decisionsmay
be self-paced and experiments may include a comprehensive set of instructions, and comprehension and manipulation checks. Visual memory
aids (Dudley et al., 1997b) and reminders of task instructions throughout the task may also be advantageous. Additionally, beads tasks should
generally include sufficient trial repetitions to reliably ascertain task behaviors accounting for response variability (Balzan et al., 2017; McLean
et al., 2018, 2020a; 2020b; Moritz et al., 2017).
–Other general factors associated with schizophrenia that may generally interfere with task construal and performance. In addition to the broad
cognitive deficitsmentioned above, other disease-general factors that that tend to differ between patientswith schizophrenia and controls may
impact task performance. These include socioeconomic status (Hakulinen et al., 2020; Hudson, 2005),whichmay partly reflect impairments in
cognitive functioning (Goldberg et al., 2011), co-morbid conditions, chronicity, institutionalization, and effects of psychiatric treatments. Some
of these social factors may contribute to decreased familiarity to related tasks and the type of computer devices used to administer tasks. In
addition, antipsychotic and other psychiatric medication may affect inference directly (Andreou et al., 2014; So et al., 2010) or indirectly
(e.g., due to somnolence and inattention). These factorsmay result in decreased draws-to-decision for the reasons discussed in the point above
and may beminimized using similar strategies. In addition, these issues may be addressed by conducting studies with larger samples of groups
that are more closely matched on all relevant dimensions, including subsets of subjects with comparable socio-economic status and enough
higher-functioning and undedicated patients, patients in earlier stages of their psychotic illness, and appropriate psychiatric and healthy control
groups (Fine et al., 2007). Testing and reporting the effects of these variables in specificity analyses is also desirable.
– Specific alterations in value-based decision-making affecting sampling decisions. Broad motivational deficits and more circumscribed alter-
ations in value-based decision-making are common in schizophrenia (Gold et al., 2008; Strauss et al., 2014). In a non-incentivized sampling
task, patients could exhibit decreased draws-to-decision because they assign less subjective value to possible incorrect guesses (e.g., due to
differences in demand characteristics and the motivation to please the experimenter, possibly in relation to alterations in social reward pro-
cesses; Catalano et al., 2018; Fett et al., 2019; Lee et al., 2018) or higher subjective value to collecting additional information samples
(e.g., due to the additional time investment and the associated decrease in reward rate or perhaps due to increased perceived cognitive effort
associated with integrating additional evidence, which could be related to alterations in cognitive-effort discounting; Chang et al., 2020;
Hartmann-Riemer et al., 2018; Kreis et al., 2020). Choice stochasticity2 could also contribute to diagnostic differences (Moutoussis et al.,
2011). Financially incentivized tasks can minimize some of these factors (e.g., the contribution of social factors and their differential impact
on clinical groups) and provide more experimental control over value-based decisions, which together with modeling can help parse contribu-
tions of valuation and choice (Baker et al., 2019). Disincentivizing certain strategies such as rushing through the task, for instance by imposing
a minimum task duration, may also minimize the contribution of some of these factors and help homogenize task-solving strategies.
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differences when comparing groups with active delusions to groups
without active delusions, including schizophrenia and other psychi-
atric diagnoses. However, the sample descriptions suggest these
groups may correspond more generally to ‘actively psychotic’ and
‘stable’ patients, respectively. Consequently, differences between
these groups could be due to factors unrelated to delusions, such as
interference of positive symptoms and disorganization with task
performance, general illness severity, and several other cognitive,
motivational, and treatment-related factors. To circumvent this
issue, several studies have focused on correlating measures of task
performance such as draws-to-decision with specific measures of
delusion severity. A common measure of delusional and delusion-
like ideation in this literature has been the Peters Delusion Inventory
5

(PDI; Peters et al., 2004). The third meta-analysis (Ross et al., 2015)
focused on studies examining correlations with interindividual vari-
ability in PDI scores. While this meta-analysis found a correlation be-
tween the jumping-to-conclusion bias and higher PDI scores, this
effect was only present when analyzing clinical and non-clinical
populations together or in non-clinical populations alone, but was
absent when limiting the analysis to patients who were clinically de-
lusional. Altogether, despite the consistent evidence for a jumping-
to-conclusions bias in schizophrenia, clear support for a specific rela-
tionship between reduced draws-to-decision and clinical delusions
in psychotic patients is lacking from this literature.

In addition to the classic, draws-to-decision version of the beads
task, “graded estimates” or probability-estimation versions of the
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beads task show participants a predetermined number of bead draws
and prompt them on a draw-by-draw basis to submit continuous prob-
ability estimates indicating their certainty about the hidden jars on a
Likert or visual analogue scale (Moritz and Woodward, 2005; So et al.,
2016; Speechley et al., 2010; Young and Bentall, 1997). Thus, these
tasks aim to directly elicit the subjective posterior beliefs about the hid-
den jars given an observed sequence of beads [e.g., the subjective ver-
sion of P(A|aaba)] instead of eliciting sampling decisions based on
these beliefs. Studies using this probability-estimation method gener-
ally find that patients with schizophrenia and delusions tend to report
higher levels of certainty earlier than healthy controls, which in princi-
ple accords with delusional beliefs being held with high certainty. At
odds with the definition of delusions, however, these studies also
show that patients change their estimates more in response to beads
that represent “disconfirmatory” evidence or evidence against the
most likely chosen jar up to that draw [e.g., the last bead b in the se-
quence aaaab, which counters the previous evidence for the chosen
jar being A, decreasing the certainty of the posterior belief for jar A
such that P(A|aaaa) > P(A|aaaab)]. Based on the argument laid out
above, these results are consistent with the notion of a jumping-to-
conclusions bias in patients. However, as with the draws-to-decision
tasks, the definition of patient groups in these studies precludes at-
tributing behavioral differences specifically to delusions (as opposed
to schizophrenia or active psychosis). Further complicating this pic-
ture, the effects in the probability-estimation paradigms are less ro-
bust and less replicable (Fine et al., 2007) than those on the standard
draws-to-decision measure (Ross et al., 2015). Moreover, despite
notable exceptions (Adams, 2018; Schmack et al., 2013; Stuke
et al., 2017; Stuke et al., 2019), common analytical approaches to
probability-estimation beads tasks hinder their interpretation in
terms of subjective beliefs. Continuous changes in reported probabil-
ities as a function of draws are often discretized into measures such
as draws-to-maximum-certainty, effectively treating the data in
the same fashion as draws-to-decision. Beyond these considerations,
even if the phenotypes from probability-estimates beads tasks had
been empirically linked to delusions, a general account of delusions
in terms of a presumed increase in weighting of evidence or likeli-
hood (i.e., increased ω2) would still face the critical challenge of
explaining the rigidity and resistance to disconfirmatory evidence
that defines delusional beliefs in general (with perhaps the excep-
tion of specific phenomena like ‘delusional perception’; but see
Adams, 2018).

Decreased draws-to-decision, and perhaps other behaviors elicited
by beads-task paradigms, are associated with a diagnosis of schizophre-
nia but not specifically with delusions. If not a delusion-related process,
what do these behaviors reflect? As with performance impairments on
any cognitive task in a clinical population such as schizophrenia, an
obvious culprit is the global neurocognitive deficit inherent to the
illness. Against the backdrop of broad motivational (Green et al., 2012;
Nakagami et al., 2008; Takeda et al., 2017) and neurocognitive deficits
associated with schizophrenia (Fioravanti et al., 2005; Habtewold
et al., 2020; Luck et al., 2019), impaired performance could be explained
by an inability to comprehend or retain task instructions, insufficient
task engagement, performance anxiety, or feeling rushed, among
other factors. Although overlooked in earlier studies, more recent
work indeed supports a role for these non-inferential factors in the
jumping-to-conclusions bias observed in schizophrenia (Balzan
et al., 2012a; Dudley et al., 1997b; Freeman et al., 2014; Tripoli
et al., 2020; van der Leer and McKay, 2014; White and Mansell,
2009), directly challenging the ability of the classic beads task to
isolate inferential processes (see Box 1 for a more detailed discus-
sion). But perhaps the most conclusive finding in this regard came
from a recent beads-task study in the largest schizophrenia sample
to date (Tripoli et al., 2020), which included 817 patients with
first-episode psychosis and 1294 controls from the general popula-
tion. Here, the jumping-to-conclusions bias in patients with
6

schizophrenia was fully explained by lower IQ (that is, diagnosis ef-
fects were no longer significant after accounting for IQ in amediation
analysis), indicating that the jumping-to-conclusions bias resulted
from a global cognitive deficit rather than from amore circumscribed
delusion-related process. Further supporting this notion, this study
reported a correlation between delusion severity and increased—
not decreased—draws-to-decision, although this effect was less
robust.

Taken together, these results strongly challenge the common as-
sumption that the jumping-to-conclusions bias, and its hypothesized
computational underpinnings (e.g., overweighting of likelihoods in in-
ferences on hidden states), play a general and significant role in the gen-
esis or maintenance of delusions in schizophrenia. More generally, the
demonstrated susceptibility of the standard draws-to-decisionmeasure
to general cognitive impairment questions its suitability as a tool for se-
lective interrogation of inferential processes relevant to delusions. How
can we better probe these processes?

4. Distinguishing inferential and non-inferential processes

The preceding discussion implies the need to devise improved para-
digms for isolating inferential processes and alterations therein. To ex-
pand further on our definition of inference, and dispel common
misconceptions in the literature, we first distinguish inferential pro-
cesses from other non-inferential processes involved in decision
making.

In describing the different conventional beads-task paradigms, we
focused on two metrics: the reported probabilities indicating certainty
about the hidden jars (the main measure from the probability-
estimation tasks) and the decisions to continue or stop drawing addi-
tional beads (the main measure from the draws-to-decision tasks).
These behaviors are typically thought to map onto two distinct pro-
cesses and are often studied with different paradigms: the first reflects
subjective posterior beliefs about hidden states [e.g., P(A|ab)] such as
those obtained through belief-elicitation tasks; the second reflects sam-
pling decisions such as those studied via information-sampling para-
digms. These two processes are fundamentally distinct. The first
reflects a belief while the second reflects an action based on that belief.
To further illustrate their precise differences, and to shed light on the
process ofmaking decisions on thebasis of beliefs, we turn to anoptimal
model for sampling decisions that has been applied to solve the beads
task and similar problems (Averbeck, 2015; Kaelbling et al., 1998): the
partially observable Markov decision process (POMDP).

Again, the draws-to-decision version of the beads task is an
information-sampling paradigm that measures decisions to sample or
to stop sampling beads. Bayesian inference alone does not provide a so-
lution formaking this type of decision. The POMDP algorithm(Fig. 1) in-
corporates Bayesian inference and additionally maximizes rewards in
sampling decisions by finding the turn (e.g., draw or sample number)
at which the costs of information sampling (the costs of drawing an ad-
ditional bead and the expected future gains derived from it) outweigh
the costs of incorrectly guessing hidden states (guessing the identity
of the chosen jar), at which point a rational agent should stop sampling.
In the context of the beads task, the POMDP provides the optimal
draws-to-decision for any given bead sequence and cost structure. Crit-
ically, the solution depends on the explicit costs of sampling and on
choice accuracy—that is, the penalty associated with a bead draw and
with an incorrect jar guess, as well as the reward associated with a cor-
rect guess (in monetary or other units). But more important for our il-
lustration are the mechanics through which the POMDP reaches a
sampling decision.

The POMDP can be portrayed as the combination of three modules
that are hierarchically nested: Bayesian inference (Fig. 1b), value com-
parison (Fig. 1c), and choice (Fig. 1d). Bayesian inference is used to com-
pute probabilistic beliefs about the hidden states (Fig. 1b) based on
observed samples (Fig. 1a). Based on these beliefs, which reflect the
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intuited probabilities of different outcomes, and on the rewards and
costs of those outcomes, an expected value for each alternative option
(drawing and guessing in future turns versus guessing at the current
turn) is calculated and compared (Fig. 1c). Finally, the option with the
highest expected value is chosen (Fig. 1d). This approximately maps
onto the consecutive steps which participants completing the beads
task may follow, at least if they were given explicit costs for a bead
draw and for an incorrect guess and an explicit reward for a correct
guess. Intuitively, early in a trial and after observing only a few beads,
participants will be uncertain about the identity of chosen jar [e.g., P
(A|ab)~P(B|ab)~0.5] because they have only gathered a small amount
of evidence. If they were to make a guess at that point, the probability
of an error would be high (~0.5). Assuming the cost of an incorrect
guess is high enough and they are motivated to avoid it, participants
would lean towards drawing another bead, assuming also its cost is
low enough. In otherwords, at that point, the expected value of drawing
is higher than that of guessing. But after drawing enough beads, once
participants are very certain about the identity of chosen jar [e.g., P(A|
abaaaa) ≫ P(B|abaaaa)], the expected probability of an incorrect
guess would be low and the expected value of guessing (and obtaining
the reward associated with a correct guess) would exceed that of draw-
ing, at which point the optimal choice would be to stop sampling and
guess. The number of draws before the guess in this scenario would
thus correspond to the optimal draws-to-decision behavior for that se-
quence and cost structure.

Critically, the POMDP illustrates that decisions to sample are
based on beliefs about hidden states, but are still distinct from
them. In the example above, the posterior belief about jar A after ob-
serving the bead sequence abaaaa is the probability P(A|abaaaa). In
turn, the expected value of guessing A depends on the probability
of an incorrect response, which is a function of the posterior belief,
and on its cost. More generally, and beyond the POMDP (Glimcher
and Rustichini, 2004), the expected value of choosing an option re-
flects the costs associated with the different possible outcomes
(e.g., A being indeed the chosen jar or not) resulting from that choice,
weighted by their probabilities. In the example case, this is given by
the following equation (where positive costs would reflect rewards
and negative costs penalties):

EVguess A ¼ P Ajabaaaað Þ � Costcorrect þ P Bjabaaaað Þ � Costincorrect
þ draw number � Costdraw ð10Þ

The POMDP calculates the expected value of all possible options:
guessing A, guessing B, and drawing. The expected value of drawing is
more complex as it involves the calculation of a tree of possible
outcomes contingent of future choices as well as their costs (see
Kaelbling et al., 1998 for the full algorithm, and Averbeck, 2015 and
Baker et al., 2019 for its applications to the beads task). Even more
importantly for our illustration, the decision to continue or stop
sampling and guess themore likely jar is simply made by taking the op-
tion with the highest expected value, i.e. max(EVguess A, EVguess B,
Fig. 1. Distinct, nested processes linking inference and sampling decisions in the POMDP
framework. For (a) a sequence of observed samples (grayed-out samples reflect future
samples that the agent never sees), this instantiation of the POMDP model shows
(b) the logit posterior beliefs of the ideal Bayesian observer (ω1 = ω2 = 1) after each
sample and (c) the difference in expected value between the best guess (the guess
associated with the jar that has highest expected value) and drawing another sample.
(d) A stopping decision is made when the expected value of the best guess is higher
than the expected value of drawing another sample, i.e., the first point at which the differ-
ence in expected values is above 0. This point represents the optimal draws-to-decision
(DTD). Note that it takes the optimal agent 6 samples (draws) to reach the stopping
point based on valuation, even though the exact same level of belief certainty was
achieved after only 4 samples (draws). This illustrates that DTD depends on value-related
factors beyond inference. The simulation uses cost parameters (starting endowment of
$30; $0 for a correct response;−$15 for an incorrect response;−$0.30 for a draw) consis-
tent with the experimental parameters from Baker et al. (2019).
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EVdraw).2 Therefore, although sampling decisions and expected values
depend on posterior beliefs, other factors like the costs associated with
different outcomes also influence these variables. In the context of the
beads task, this strongly suggests that draws-to-decision depends not
only on inferences about hidden states but also on the costs attributed
to different courses of action. These costs may be implicit or explicit, re-
lated to financial costs, cognitive effort, social rewards, or others related
factors. This can be shown by parameterizing the POMDP, which allows
for the simulation of changes in draws-to-decision by modifying costs
andother variables. Increased (subjective) costs of drawing, for instance,
produces decreased draws-to-decision (Baker et al., 2019).

Sampling decisions in information-sampling paradigms such as the
draws-to-decision beads task are thus best conceptualized as a value-
based decision. Interindividual differences in draws-to-decision would
appear likely to depend on subjective valuation processes distinct from
inference and cannot provide a direct readout of inferential processes
unless the non-inferential valuation processes are carefully controlled.
This notion is supported by preliminary data from our group (Baker
et al., 2019) and other direct demonstrations that beads-task behaviors
depend on task incentives (Grether, 1992; van der Leer and McKay,
2014), as well as on the subjective evaluation of those incentives
(Ermakova et al., 2019). The corollary is that decreased draws-to-
decision in schizophrenia may reflect a number of non-inferential, valu-
ation processes (Box 1). Specifically, patients may tend to draw fewer
beads simply because they attribute different subjective costs to draw-
ing or incorrect guesses compared to controls, especially given that the
classic beads task does not stipulate explicit costs. Patients may be less
motivated to make accurate guesses or more sensitive to the cognitive
costs of additional samples. Alternatively, decreased draws-to-decision
could reflect a calculation involving the subjective value of the time
spent performing the task at the expense of other activities. The possibil-
ity of terminating the classic beads task by deciding to stop drawing ear-
lier further suggests that a participant focused on maximizing reward
rate may decide to do just that, in which case the “jumping-to-conclu-
sions” behavior would actually reflect an optimal strategy.

In sum, alterations in draws-to-decision could reflect a number of
changes in value-based decisions apart from inference, and insufficient
control over these non-inferential factors in classic versions of the beads
task precludes their distinction from inferential processes (see Box 1 for
amore detailed discussion of these factors and suggested approaches to
minimize them). We now turn to more novel approaches to measuring
inference that permit better control over these non-inferential factors.

5. Enhanced approaches to probe inference and novel findings

With the abovementioned limitations in mind and building on prior
modeling work (Furl and Averbeck, 2011; Moutoussis et al., 2011), we
recently developed a variant of the beads task designed to isolate infer-
ential alterations underlying delusions (Baker et al., 2019). This task is an
information-sampling task where participants choose at each iteration
within a trial whether to draw a bead or guess the identity of the chosen
jar, which can thus measure draws-to-decision behavior. It also has a
built-in belief-elicitation component consisting of prompts for probabil-
ity estimates before each choice, recorded on a continuous sliding scale,
to allow for amore direct readout of inferential processes. The establish-
ment of an explicit cost structure (with an initial endowment of $30 and
explicit costs for sampling,−$0.30, and incorrect guesses,−$15), along
with a minimum task duration, further makes the task incentive
2 Here, in line with the standard POMDP model, we use a deterministic choice rule
whereby the action (guessing or drawing) with the highest expected value is selected.
However, a softmax choice rule is commonly implemented inparameterizedmodels to se-
lect an action probabilistically as a function of expected value (Averbeck, 2015; Baker et al.,
2019; Moutoussis et al., 2011). As the difference in expected value between actions in-
creases, so does the likelihood that the action with higher expected value will be selected.
Choice stochasticity is modeled by incorporating an additional ‘temperature’ parameter
that scales these likelihoods.
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compatible and renders the resulting data tractable to the POMDP frame-
work. Consistent with the behavioral economics literature at large
(Camerer, 1997; Camerer and Mobbs, 2017; Camerer et al., 2016;
Ortmann, 2009; van der Leer and McKay, 2014) and specific clinically
relevant applications (van der Leer and McKay, 2014), our experience
suggests that an incentivized task is critical to engage participants and
ensure their responses reflect their true preferences, particularly in clin-
ical populations. Further, the task administration protocol includes com-
prehensive instructions which emphasize the objective of maximizing
rewards on the task, practice trials that serve to ensure task comprehen-
sion, and a visual aid to control for possible working-memory deficits.

We obtained datawith this controlled task in 24 patientswith schizo-
phrenia with varying levels of delusional severity (11 of them unmedi-
cated with antipsychotics) and 21 healthy controls (Baker et al., 2019).
First, a number of checks demonstrated the effectiveness of the various
manipulations: sensitivity to task manipulations at the individual level
and responses on a post-task questionnaire indicated participants ade-
quately understood the task, which with the lack of systematic biases
in initial (pre-bead) probability estimates, suggested that the data
comported with model assumptions. A critical finding in this study was
the strong correlation within patients between increased draws-to-
decision and higher delusion severity scores, measured by PDI score, a
finding at oddswith the conventionalwisdomof the beads task literature
(but consistent with other data, including Tripoli et al., 2020). Impor-
tantly, this increase in draws-to-decision was specific to delusions, com-
pared to a number of other clinical variables—even other positive
symptoms—and cognitive and sociodemographic factors, and held in un-
medicated patients alone. The insensitivity to general factors, including
numeracy andworking-memory performance, implied that global cogni-
tive deficits were not amain driver of the observed variability in task be-
havior. Indeed, patients with delusions tended to exhibit better accuracy
than non-delusional patients. Beyond the delusion-specific effect, we
found that patients as a group showed the expected decrease in draws-
to-decision compared to controls, but only when controlling for PDI
scores, and this diagnosis effect disappeared after controlling for socio-
economic status. Altogether, these results describe (1) a more selective
process linking increased information sampling to increased delusion se-
verity and (2) a more general process linking decreased information
sampling (a jumping-to-conclusions-type bias) to the lower socioeco-
nomic status and cognitive deficits associated with schizophrenia, in
line with later work (Moritz et al., 2020; Tripoli et al., 2020; Box 1).
This result raised the question of whether inferential processes were
driving the delusion-related increase in information-sampling behavior.

We turned to the draw-by-draw probability estimates provided by
the participants for an answer. A weighted Bayesian model equivalent
to that in Eq. 4 provided a reasonable fit to the probability estimates
and captured qualitative differences in changes in the estimates over
draws, which appeared to update more slowly in more delusional pa-
tients. More importantly, we used the fitted model parameters for the
prior weightω1 and likelihoodweightsω2 (one for each likelihood con-
dition in the task) for each participant to evaluate interindividual devi-
ations as a function of delusion severity. In line with previous work,
healthy individuals and patients with low delusion severity tended to
underweight prior beliefs (ω1 < 1). Our central finding, however, was
that higher fitted values of the prior weight ω1 correlated with both
higher delusion severity andwith increased draws-to-decision behavior
in patients, suggesting that both delusions and their effect on informa-
tion sampling depended on a specific inferential failuremode consisting
of a relative prior overweighting (or lessened prior underweighting3)
3 We have elected to refer to this computational phenotype as relative prior
overweightingwith respect to the non-delusional patients, who in absolute terms showed
the commonly observed underweighting of prior beliefs. Delusional patients in Baker et al.
exhibited prior weightsω1 closer to the Bayesian benchmark of 1 and therefore this could
also be framed as less absolute prior underweighting than non-delusional individuals.
However, we find framing this computational phenotype in relative terms to be more
intuitive.
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Fig. 2.Dynamic effects of prior weighting on inference and relevance to the form of delusions. (a) Long-term trajectory of beliefs with respect to a black jar (in probability space) for two
agents (higherω1 = 0.995; lowerω1 = 0.950;ω2 = 1 for both agents) over 450 randomly selected samples (with replacement) in the beads task. Here, and in general, please note that
parameter values were selected to illustrate the belief-updating effects highlighted in the main text. The correct (black) jar has a ratio of 55 black beads to 45 white beads, reflecting an
ambiguous situation of weak sensory evidence (likelihood of 0.55). This simulation illustrates an ω1-driven rigidity effect, whereby the beliefs of the higher-ω1 agent take more
disconfirmatory samples to return to an uncertain level, and a concomitant certainty effect, whereby its beliefs tend to be more certain, relative to the lower-ω1 agent. (b) Long-term
trajectory of beliefs with respect to a black jar (in probability space) for two agents (higher-ω2 = 1; lower-ω2 = 0.40; ω1 = 0.95 for both agents) over the same 450 randomly
selected samples in (a) in the beads task. For reference, the higher-ω2 agent in (b) is identical to the lower-ω1 agent in (a). Changes in ω2 induce a certainty effect, i.e., the higher-ω2

agent tends to reach more certain beliefs than the lower-ω2 agent, but has no effect on belief rigidity. (c, d, e) Simulations illustrating local belief-updating dynamics over 5 samples
for a (c) lower-ω1 agent (ω1= 0.70; ω2 = 1; similar to healthy individuals in Baker et al.), a (d) higher-ω1 agent (ω1 = 0.98; ω2 = 1; consistent with delusional patients in Baker
et al.), and a (e) lower-ω2 agent (ω1 = 0.70; ω2 = 0.40). The dotted diagonal lines depict the “leak” of logit prior beliefs and their endpoints indicate the value of the weighted prior
for the next belief update. The solid horizontal line is a reference to indicate the value of the unweighted prior. Thus, the distance between the solid line and the dotted line reflects
the magnitude of the prior leak for each update. The dashed vertical lines reflect the contribution of the logit likelihood (LLR) to the belief update. It is apparent in (a) that for lower-
ω1 agents, prior beliefs “leak” more, gradually decreasing the magnitude of belief updates over samples leading to relatively less certain and less rigid beliefs; and (b) shows that these
effects are attenuated for higher-ω1 agents, leading to relatively more certain and more rigid beliefs. Comparing (a) and (c) highlights that differences in ω2 only scale belief certainty
and do not affect belief rigidity.
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compared to non-delusional patients. This interpretation was further
corroborated by model-agnostic analyses and simulations of selective
changes in the weight of prior beliefs in the context of the POMDP.
This finding was specific to inferential processes as opposed to non-
inferential processes. In a parameterized POMDP model, we showed
that valuation and choice parameters based on subjective posterior be-
liefs were uncorrelated with delusions and draws-to-decision behavior,
as were valuation parameters denoting subjective aversion to loss, risk,
and ambiguity on other decision-making tasks.

Using a POMDP-inspired task design with a number of additional
controls over standard designs, together with computational modeling
9

of inference and information sampling, allowed us to uncover a candi-
date failuremode for delusions: a relative overweighting of prior beliefs
in inference. This process appears to be clinically specific to delusions
and computationally specific to inference. While these results certainly
call for replication and extension, theymay provide the foundation for a
parsimonious, empirically supported model of delusions. Best practices
in computational modeling include demonstrating the ability of selec-
tively manipulated models to generate the observed behaviors via in
silico simulations (Wilson and Collins, 2019), as we did in this work
(Baker et al., 2019). In this vein, we will now use model simulations to
illustrate how the proposed failure mode—increased prior weight ω1—



4 As in Eq. (2), the LLRs of sample s is defined as logðPðsjAÞPðsjBÞÞ and it reflects themomentary

evidence associated with this individual sample. For example, if the current sample s is a
green bead (a) and the majority-to-minority ratio in the hidden jar is 60:40, the LLRs for

the green jar (A) based on this observed green bead (a), is given by logðPðajAÞPðajBÞÞ = logð0:60:4Þ
¼ 0:405.
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produces a dynamic primacy bias in probabilistic belief-updating that
captures the defining characteristics of delusional beliefs.

6. Overweighting of prior beliefs as a candidate failure mode for
delusions

Our previous empirical findings (Baker et al., 2019) suggest that an
inferential alteration consisting of relative overweighting of prior beliefs
could be responsible for delusions. It is worth considering whether the
opposite is true: whether altered behaviors in delusional patients result
from their delusions and general suspiciousness rather than reflecting
an underlying alteration causing delusions. We considered and ulti-
mately rejected the former possibility due to a number of observations
that rendered it implausible (Baker et al., 2019). Instead, we ask here
whether prior overweighting could theoretically cause the core phe-
nomenological features of delusions. Wementioned in the introduction
that delusional phenomena are highly variable across individuals; the
content of delusional beliefs can involve any imaginable topic and varies
widely with cultural and experiential context. Even falsity, part of the
classical definitions of delusions, is now typically considered unneces-
sary to deem beliefs as delusional (e.g., as per the DSM-5 definition).
The core features refer to their specific form as highly certain and rigid
beliefs, which are generally considered necessary features of delusions.
Could prior overweighting generate excessively rigid and certain beliefs
akin to delusions?

We first consider the belief-updating dynamics induced by varia-
tions in prior weighting in the context of long-term sequential belief
updating. This context ismost relevant because in the real-world people
usually sample ambiguous pieces of information over relatively long pe-
riods of time (Nastase et al., 2020), and because delusions are typically
held over months or years with relative insensitivity to momentary sit-
uational factors (putting aside for expository purposes the roles of stress
and negative emotion on delusion exacerbation (Ben-Zeev et al., 2012;
Brenner and Ben-Zeev, 2014; Granholm et al., 2020).

Fig. 2a shows simulated data using the weighted Bayesian model
(Eq. (4)) in which two agents, identical except that one has a relatively
lower prior weight (ω1 = 0.950) and the other a relatively higher prior
weight (ω1 = 0.995), sequentially update their beliefs about hidden
states upon receiving samples of information consistent with one of
two complementary hypotheses with respect to the hidden states
(ω2 = 1 for both agents). Note that the specific prior weights for
these agents are selected here to visually highlight effects of interest
the generality of which is proven later. This simulation is illustrated as
the long-run posterior probability estimates produced by these two
agents on a beads task where the evidence is weak (likelihoods P
(a|A)= P(b|B)= 0.55). From the simulation in this ambiguous context,
it becomes clear that the priorweightω1 affects the dynamics of sequen-
tial belief updating by controlling a primacy-recency bias. Higher ω1

leads to a relative primacy bias characterized by the increased relative
influence of older evidence (and decreased responsiveness to newer ev-
idence) on current beliefs, or more “sticky” (less “leaky”) beliefs; lower
ω1 leads to a recency bias characterized by a reduced influence of older
evidence (and increased responsiveness to newer evidence) on current
beliefs, ormore “leaky” beliefs. This is in direct contrast to the likelihood
weight ω2, which scales the strength of all evidence equally, and
consequently does not produce qualitative, dynamic changes in the be-
lief trajectory (see below). While ω2 is similar to the drift rate in
evidence-accumulation models (Gold and Shadlen, 2007; Smith and
Ratcliff, 2004), ω1 makes the weighted Bayesian model a type of dis-
crete, leaky accumulator (Bogacz et al., 2006; Busemeyer and
Townsend, 1993; Usher and McClelland, 2001).

At least at face value, this primacy-recency bias associated with
the prior weight ω1 appears to capture the two core features of delu-
sions. Higher ω1, similar to that we observed in delusional patients,
produces higher certainty and greater rigidity in beliefs, both specif-
ically stemming from a change in ω1. Higher belief certainty is
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manifest from posterior beliefs reaching asymptotic levels closer to
1 (Fig. 2a)—where 1 denotes complete certainty about the underly-
ing hidden state and 0.5 reflecting total ambiguity. Higher rigidity
(or equivalently more “stickiness”) in beliefs is clear when examin-
ing the belief dynamics in response to randomly drawn samples. As-
suming the chosen jar is A (or the black jar in Fig. 2a), if minority
samples (b) happen to predominate early on, followed by more ma-
jority samples (a) later on, belief updates are more sluggish in the
agent with higher ω1; compared to the low-ω1 agent, the high-ω1

agent takes more samples to rectify its belief trajectory to start favor-
ing of the correct hidden state A (Fig. 2a). That is, beliefs in the high-
ω1 agent aremore resistant to evidence contrary to a favored hypoth-
esis, or more rigid. Consistent with the observation from Jardri and
Denève (Denève and Jardri, 2016; Jardri and Denève, 2013), these
dynamic effects are more apparent in ambiguous contexts, which
could explain why more complex and ambiguous social contexts
may be fertile ground for the development of delusions. In contrast
to the dynamic effects of the prior weight ω1, changes in the likeli-
hood weightω2 can only induce higher belief certainty but not belief
rigidity (Fig. 2b).

Themathematics and generality of these effects can be derived from
Eq. 4. To illustrate this, we start by re-writing Eq. 4 such that the logit
posterior belief after seeing sample s, bs, is the result of a weighted
sum of the logit prior belief before observing this sample, bs−1, with
the logit likelihood (or log-likelihood ratio) of sample s, LLRs. (In the
beads task, the LLRs is defined by the bead color in the current draw
and the majority-to-minority ratio of bead colors in the hidden jar.4)

bs ¼ ω1 � bs−1 þω2 � LLRs ð11Þ

By expanding the prior term bs−1 tomake explicit how the posterior
belief would be influenced by evidence from previously observed sam-
ples through an iterative process, the effect ofω1 starts becoming appar-
ent. We illustrate this using a sequence of three samples, the evidence
from which is given (in reverse chronological order) by LLRs, LLRs−1,
and LLRs−2.

bs ¼ ω1 � ω1 � bs−2 þω2 � LLRs−1ð Þ þω2 � LLRs ð12Þ

bs ¼ ω1 � ω1 � ω1 � bs−3 þω2 � LLRs−2ð Þ þω2 � LLRs−1ð Þ þω2 � LLRs ð13Þ

Assuming that the initial prior belief before observing any samples is
unbiased (bs−3=0),we can rearrange this formula to clearly see the ef-
fects of ω1 and ω2 on sequential belief updating.

bs ¼ ωs−1
1 � ω2 � LLRs−2ð Þ þωs−2

1 � ω2 � LLRs−1ð Þ þ ω2 � LLRsð Þ ð14Þ

bs ¼ ∑s−1
n¼1ω

s−n
1 � ω2 � LLRnð Þ

� �
þ ω2 � LLRsð Þ ð15Þ

This shows thatω1 controls the influence of older evidence on beliefs
over time. For 0 < ω1 < 1, each sample of older evidence is discounted
more than the next due to the increasing powers on the ω1 parameter.
In contrast, ω2, scales all samples of evidence equally.

Therefore, mathematically, the prior weight ω1 controls the rate of
exponential decay in the contribution of a sample of evidence on a
given belief, a form of primacy-recency bias that determines rigidity
and responsiveness to new evidence (Baker et al., 2019; Benjamin
et al., 2019; Benjamin, 2019; Enke and Graeber, 2019; Grether, 1980).
Furthermore, the prior weight ω1 directly limits maximum belief cer-
tainty over the long term. For an infinite series of samples, the posterior
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belief is bounded as a function ofω1 and the likelihood ratio (Benjamin
et al., 2019), as:

max bsð Þ ¼ lim
s→∞

bs ¼ LLR
1−ω1

ð16Þ

Per Eq. 16, agents with higherω1 have a higher ceiling on belief cer-
tainty, consistentwith the relatively high certainty associatedwith delu-
sional beliefs. Per Eq. 15 they have a relative primacy bias whereby
beliefs are more influenced by older evidence and less responsive to
new evidence, consistent with the belief rigidity characteristic of delu-
sions. Both core features of delusions stem from higher ω1.

Eqs. 15–16 thus prove the generality of the effects exemplified in
Fig. 2a, where higher values of the prior weight ω1 simultaneously in-
duce belief trajectories that are more rigid and reach higher certainty.
In contrast, higher values of ω2 only increase the certainty of beliefs
without affecting their rigidity (Fig. 2b). Therefore, thedynamic changes
in belief updating that capture belief rigidity (i.e., the relative primacy
bias) uniquely depend on the prior weight ω1.

For further clarification, Figs. 2c-e illustrate these belief-updating ef-
fects in the short term, over the course of a few samples. A lower-ω1

agent (Fig. 2c;ω1=0.70;ω2=1), resembling healthy controls, exhibits
a clear “leak” in prior beliefs, showing less certain posterior beliefs after
observing a sequence, aaaab. For 0 < ω1 < 1, because the weighted
prior, ω1 · bs−1, is a fraction of the unweighted prior bs−1, the leak is
greater for more certain beliefs and becomes more obvious with more
observed samples. This also explains its increased response to the
“disconfirmatory” sample b at the end of the sequence, relative to the
higher-ω1 agent. Conversely, an agent resembling delusional patients
with high ω1 (Fig. 2d; ω1 = 0.98; ω2 = 1) exhibits less “leak”, ends
with higher certainty for A, and responds relatively less to the
“disconfirmatory” sample. For contrast, Fig. 2e illustrates the isolated ef-
fects of changes in ω2.

Above,we said that delusional patients in Baker et al. (2019) showed
slower belief updating compared to non-delusional individuals. But, in
Fig. 2d the delusion-like, higher-ω1 agent mostly showed increased be-
lief updates relative to the lower-ω1 agent. How can we reconcile this?
An important insight from the dynamics of the weighted Bayesian
model is that, unlike the optimal Bayesian model, its belief trajectories
depend on the ordering in which sequential samples of information
are presented; this model's beliefs are path-dependent. The magnitude
of the difference in belief updates for different values ofω1 will thus de-
pend on the specific sequence of samples (Figs. 3a-c). Under the
POMDP, this has important consequences for draws-to-decision behav-
ior on the beads task. Differences in the prior weight ω1 induce order-
dependent changes in beliefs (Figs. 3a-c) that, in turn, drive differences
in the expected value of guessing versus drawing and consequently in
draws-to-decision behavior (Figs. 3d-e). Thus, differences in draws-to-
decision between delusional and non-delusional individuals—assuming
these can be modeled via higher versus lower ω1 values—will also de-
pend on the sequence of samples, at least to some degree. We illustrate
this point by showing that, depending solely on the sequence (the only
difference between Fig. 3d and e), a higher-ω1 agent (ω1 = 0.98) can in
principle show either decreased or increased draws-to-decision relative
to a lower-ω1 agent (ω1 = 0.89). For this reason, the specific pattern
of delusion-related effects in previous work may, among other things,
depend on the specific bead sequences used in a given version of the
task. This includes the pattern of delusion-related effects in Baker et al.
(2019), where we observed slower belief updating and increased
draws-to-decision in delusional patients. Model simulations using the
specific bead sequences in that task showed that a selective increase
in ω1 drives increases in draws-to-decision over those particular se-
quences—this is because, for these sequences, increased ω1 causes on
average slower belief updating and consequently less certain beliefs
about the identity of the chosen jar at a given point within a trial,
which results in smaller expected values for guessing relative to
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drawing and an increased tendency to draw. But the predicted behavior
would vary for a different set of sequences. This raises yet another foun-
dational issue with using draws-to-decision as a proxy for inference. By
introducing sequential dependencies in belief updating, the substantial
variability in prior weighting observed across individuals calls into
question the utility of an aggregated summary measure such as
draws-to-decision to capture the dynamic inferential alterations hy-
pothesized to underlie delusions.

7. Normative explanations for changes in prior weighting

We began this paper by considering a normative Bayesian model of
inference that optimizes estimation accuracy (Eqs. (1)–(3)). One can
think of this model as an idealized agent whose behavior is optimal, ab-
sent all constraints. Drawing on our ownwork, we then explored how a
parameterized or weighted Bayesian model (Eq. (4)) describes devia-
tions from the optimal benchmark and between individuals that are rel-
evant to delusions.We also showed how a particular deviation or failure
mode in this descriptive model, a relative overweighting of the prior,
may be theoretically sufficient to explain the core features of delusions.
An unsatisfying aspect of this descriptive approach is that it does not
provide amechanistic explanation for why priorweightingmay deviate
from the normative optimum, or specify the constraints under which
this deviationmay actually not be suboptimal. Prescriptivemodels of in-
ference, however, allow parameters (like the priorweightω1) to vary as
a function of environmental circumstances and/or theorized internal
limitations in information processing, permitting adaptations to these
constraints. Consequently, in prescriptive models, the mathematically
optimal value of a parameter may differ depending on these factors
(as opposed to the fixed parameter values in the normativemodel). Pre-
scriptivemodels can therefore point tomaladaptations to presumed ex-
ternal or internal factors that might drive variability in parameter
values. Here, we briefly introduce classes of prescriptive models
where variable prior weighting is optimal, to gain theoretical insights
into possible mechanistic causes of prior overweighting in delusional
patients.

In one suchmodel, the optimalweighting of prior beliefs is governed
by environmental volatility, or the frequency of unannounced changes
in hidden states (Glaze et al., 2015). The intuition is the following. In a
situation where hidden states change abruptly (e.g., the identity of the
chosen jar in the beads task suddenly changes mid trial), evidence pre-
sented before that change becomes uninformative. Rationally, if one
were able to identify or surmise the changepoint, then they should dis-
count all beliefs formed on the basis of samples presented before the
changepoint and start forming new beliefs “from scratch”. More gener-
ally, if changes in hidden states are frequent, then it is adaptive to di-
minish the contribution of (or increase the “leak” of) prior beliefs in a
manner approximately equivalent to decreasing ω1 (although in this
model the weight on the prior depends non-linearly on both the likeli-
hood and the hazard rate, H— the probability of a change in the hidden
state per unit of time). In short, prior underweighting is optimal when
the perceived environmental volatility is high. The corollary is that indi-
vidualswho underestimate volatilitymay overweight prior beliefs com-
pared to optimal agents. Therefore, the finding of relative prior
overweighting in delusional patients could reflect underestimation of
environmental volatility, which could in turn depend on alterations in
neuromodulator and neural systems thought to contribute to this pro-
cess, including the norepinephrine (Silvetti et al., 2013; Vincent et al.,
2019) or dopamine (Cools, 2019; Diederen and Fletcher, 2020) systems.
Wehave proposed a relatedmechanism for hallucinationswhereby hal-
lucinating patients with excess nigrostriatal dopamine may overweight
lower-level perceptual priors through an inability to encode prior un-
certainty (Cassidy et al., 2018), with other data supporting
overweighting of lower-level perceptual priors in hallucinators that
co-exist with—but do not necessarily depend on—alterations in volatil-
ity estimation in psychotic patients (Powers et al., 2017). Other related
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Fig. 3. Evidence-order effects on belief updating and draws-to-decision under theweighted Bayesianmodel. (a, b) Simulation of logit posterior beliefs favoring the black jar for a higher-ω1

agent (ω1 = 0.98) and a lower-ω1 agent (ω1 = 0.70) in two sequences. In (a) evidence favoring the black jar (the correct jar) occurs earlier in the sequence, and the higher-ω1 agent
generally exhibits more certain beliefs than the lower ω1 agent that the majority black jar is the correct jar. In (b) evidence favoring the black jar occurs later in the sequence, and the
higher-ω1 agent instead exhibits less certain beliefs than the lower-ω1 agent. Note that parameters were selected to visually exaggerate the effects of interest, although their generality
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values (shades of blue) indicate that the lower-ω1 agent was more certain. (d, e) Simulations of the POMDP valuation process comparing two agents (the same agents from 3c) across
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ideas are indeed commonplace in computational psychiatry, not only in
schizophrenia but for several other disorders (Huang et al., 2017 2017;
Lawson et al., 2017; Paliwal et al., 2019; Palmer et al., 2017), possibly
due to the extensive use of algorithms implementing volatility-
dependent hierarchical inference in this literature (Adams, 2018;
Adams et al., 2014; Heinz et al., 2019; Mathys, 2011; Stephan and
Mathys, 2014; Sterzer et al., 2018). However, whether a volatility ac-
count could explain the delusion-related prior overweighting we
observed in Baker et al. (2019) is unclear. Arguing against this, our
task explicitly instructed participants that hidden states were stable
during a trial (i.e., there was no volatility; H = 0), so interindividual
variability on this task appears more likely to depend on factors other
than volatility estimation (although one counterargument is that a
neuromodulatory or other neural alteration giving rise to volatility mis-
estimationmay be present even in stable environments and still impact
behavior in this context). So are there other possible accounts, unrelated
to volatility?

Another relevant model posits that inference depends on noisy neu-
ral samples that represent prior beliefs with some level of imprecision,
and that optimal prior weighting is governed in part by the internal
costs of improving precision in the representation of prior beliefs. This
model can be placed within a larger class of models popular in the eco-
nomics literature, the so-called “bounded rationality” models (Simon,
1990). Instead of solely focusing on environmental constraints, these
models also consider optimal adaptations to internal limitations, or con-
straints, in information processing. In other words, these models pre-
scribe how optimal agents like humans and other animals should
behave given their limited cognitive resources. In the case of the noisy
sampling model of inference recently proposed by Azeredo da Silveira
and Woodford (2019), resource-limited agents are assumed to access
a representation of prior evidence through noisy sampling, providing
an imprecise reproduction of prior beliefs (Note that the term ‘sample’
is not to be confused with that we used in the context of
information-sampling tasks, where a sample corresponded to an ob-
served piece of objective evidence in the task, like a bead draw; here
we use this term to refer to neural samples or instances of a cognitive re-
trieval process that represents prior information without requiring full
access to it). The precision of this prior estimate can increase, reducing
noise in the samples, but that comes at the cost of allocating more cog-
nitive resources. This creates a tradeoff between the costs of cognitive
precision and the cost of inaccurate predictions. An optimal agent can
find the balance between these two costs by diminishing its reliance
on prior evidence, which would be reflected in our descriptive model
by decreasing the prior weightω1. This is consistent with data showing
that humans tend to underweight prior beliefs, as mentioned above,
which leads to posterior beliefs that are more responsive to new evi-
dence and which always retain some level of uncertainty (like the
lower-ω1 agents in Fig. 2a and c). The notion of prior sampling is also
consistent with other work supporting the plausibility of sampling-
based models of approximate Bayesian inference (Bornstein et al.,
2018; Haefner et al., 2016; Heng et al., 2020; Hoyer and Hyvärinen,
2003; Shadlen and Shohamy, 2016). Applied to delusions, this framing
may suggest that prior overweighting could result either from alter-
ations in the prior-sampling process itself (e.g., increased redundancy
and decreased noise in prior samples) or from alterations in strategies
used to resolve the tradeoff (e.g., if delusional patients underestimate
the cost of cognitive precision).

Beyond these two models, which can broadly explain prior
overweighting as a consequence of maladaptations to environmental
volatility or limited cognitive resources, a third possibility goes back to
the standard algorithm of normative Bayesian inference. As mentioned
above (Eqs. (5)–(8)), a tradeoff between the prior weight ω1 and the
likelihood weight ω2 is commonly assumed in Bayesian inference on
continuous variables and consistent with empirical data demonstrating
reliability-weighting in inference (Aller and Noppeney, 2019; Chambon
et al., 2017; Chambon et al., 2011a; Chambon et al., 2011b; Fetsch et al.,
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2012; French and DeAngelis, 2020; Orbán and Wolpert, 2011). Under
such a tradeoff, the overweighting of prior beliefs could result from de-
creased reliability in the representation of new evidence (Teufel et al.,
2015). More work is thus needed to arbitrate between this and the
other possible explanations discussed in this section.

8. Evidence for hierarchical-inference models of delusions

As mentioned earlier, weighting of prior beliefs and sensory evi-
dence can also be accomplished through hierarchical message passing.
What is the evidence that delusions result from alterations in these hi-
erarchical processes?

The hierarchical-inferencemodels discussed earlier theorize that de-
lusions result directly or indirectly from increased weighting of sensory
evidence. Generalized predictive-coding models suggest that
overweighting of sensory evidence at low levels of the hierarchy,
which initially causes amplified belief updating, secondarily result in
an overcompensation characterized by overweighting of prior beliefs
at higher levels (Adams et al., 2013). The latter stage is in principle con-
sistent with the proposed failure mode we discussed at length. In con-
trast, the proposed version of circular inference discussed above posits
that delusions primarily arise fromdisinhibition of bottom-upmessages
conveying sensory evidence (Jardri and Denève, 2013). While the
belief-propagation model is itself hierarchical, the proposed alteration
affects bottom-up connections similarly across the levels of the hierar-
chy. That is, the proposed alteration is not level-specific, although the
hierarchical architecture of the model still enables level-dependent
changes in belief updating. In any case, the proposed failuremode in cir-
cular inference would effectively manifest as overweighting of sensory
evidence.

While empirical work supports hierarchical-inference models in
general (Iglesias et al., 2013) and initial work is generally consistent
with hierarchical alterations in schizophrenia (Diaconescu et al., 2014;
Diaconescu et al., 2017; Haarsma et al., 2020a; Heinz et al., 2019;
Henco et al., 2020; Sterzer et al., 2019), specific links to clinical delusions
have been more elusive in this emerging literature (Cole et al., 2020;
Diaconescu et al., 2019). Recent empirical studies inspired by general-
ized predictive-codingprinciples, however, hint at delusion-relevant hi-
erarchical alterations. These studies investigated paranoid and
persecutory ideation in the general population using tasks thatmanipu-
late volatility in underlying hidden states. Consistent with the notion of
overweighting of prior beliefs at higher levels, these studies showed
that more paranoid ideation was associated with overweighting of
prior beliefs about volatility in non-social contexts (Reed et al., 2020)
and overweighting of beliefs about advice fidelity in social contexts
(Diaconescu et al., 2020; Wellstein et al., 2020). More work is needed
to probe this failure mode hypothesized to drive delusions, which
given its hierarchical, state-dependent nature may require longitudinal
investigations.

Some evidence supports circular inference in schizophrenia. In a
probability-estimation version of a beads-like task with explicit cueing
of prior information, patients with schizophrenia exhibited behaviors
consistent with undercounting of prior beliefs and overcounting of sen-
sory evidence compared to healthy controls (Jardri et al., 2017). Fur-
thermore, the severity of delusional beliefs correlated with a fitted
parameter reflecting bottom-up disinhibition. In principle, this result
fits well with the predictions of the circular-inference model. However,
its specificity to delusions versus other symptom dimensions like disor-
ganization was less clear. One concern is that working-memory or gen-
eral cognitive deficits likely interfered with the acquisition of prior
knowledge, introducing variability in the formation of prior beliefs
based on briefly presented visual cues (interindividual variability in
working-memory performance indeed correlated with a prior weight
parameter). Thus, it is not entirely clear that alterations in the relative
weighting of prior beliefs and sensory evidence reported using this par-
adigm can be confidently attributed to alterations in the integration of
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this information—i.e., the inference process itself—or that a more gen-
eral cognitive deficit interferingwith its acquisition could bedefinitively
ruled out. Notwithstanding, further testing of the failure modes pro-
posed within the circular-inference framework, and contrasting these
against those proposed under the generalized predictive-coding frame-
work, would be a fruitful future direction.

One appealing aspect of the proposed failure mode for delusions is
that it may complement a mechanistic explanation of hallucinations
that has received growing empirical support: namely, that hallucina-
tions result from overweighting of perceptual prior beliefs (Corlett
et al., 2019). As implied by the definition of the psychotic syndrome,
hallucinations and delusions typically co-occur and evolve in parallel.
A parsimonious explanation of psychosis would thus invoke a common
driver for these symptoms. However, these individual symptoms some-
times occur in isolation, suggesting the existence of symptom-specific
pathways. This may be reconciled within the hierarchical-inference
framework discussed above,which generally posits that inferential neu-
ral systems feature different but interdependent levels of processing. In
this context, one possibility (Davies et al., 2018; Horga and Abi-
Dargham, 2019) is that delusions and hallucinations result from similar
algorithmic alterations occurring at different levels of the hierarchy
supporting different computational goals. Both symptoms could be ex-
plained by a similar failure mode—i.e. overweighting of prior beliefs—
with hallucinations arising fromprior overweighting at lower hierarchi-
cal levels supporting inference on stimulus properties and delusions, in
contrast, arising from prior overweighting at higher hierarchical levels
supporting causal inference on hidden abstract states. This scenario
would predict that hallucination severity should correlate preferentially
with prior biases in perceptual tasks involving signal detection ormagni-
tude estimation and delusion severity instead with prior biases in
hidden-state inference tasks such as the beads task, consistent respec-
tively with our prior behavioral work in hallucinations (Cassidy et al.,
2018) and delusions (Baker et al., 2019). Critically, the interdependence
between hierarchical levels inherent to this framework suggests that al-
terations at one level of the hierarchy may propagate to, or otherwise
impact, other levels (Chaudhuri et al., 2015; Cicchini et al., 2020). Alter-
natively, partially shared elements within circuit motifs present at sev-
eral levels may provide similar, although not necessarily identical,
levels of susceptibility to commondrivers (e.g., dopamine or glutamater-
gic dysfunction). Therefore, in principle this framework could readily ac-
commodate the usual association of psychotic symptoms aswell as their
possible dissociation, for instance if differences in circuitry at specific
levels (e.g., long-range connectivity or presence of certain cell popula-
tions) render themmore susceptible or resilient than other levels. Exam-
ining neuroanatomical hierarchies of intrinsic neural timescales in fMRI
data, we found initial support for this notion by showing that hallucina-
tions and delusions correlate with distinct hierarchical alterations in the
auditory and somatosensory systems (Wengler et al., 2020).

Despite the valuable contribution of hierarchical-inference models
to computational psychiatry, specific alterations in hierarchical infer-
ence linked selectively to delusions have not been conclusively
established. Given this, and since the failure mode we have focused on
—relative overweighting of high-level priors in causal inference on hid-
den states—can indeed be accommodated within the hierarchical-
inference framework, we argue that this failure mode remains a top
candidate the implementation of which is worth considering further.

9. Potential neurobiological implementations of prior weighting
and delusions

To attain a holistic perspective on the merit of prior overweighting
as a failure mode driving delusions, one must consider what is known
about the neurobiological implementation of prior weighting in the
brain and how it intersectswith the pathophysiological substrates of de-
lusions. Here we briefly discuss a selection of relevant neurobiological
findings, starting with the pathophysiology of delusions.
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The expression of psychosis and its response to antipsychotic treat-
ment has long been linked to mesostriatal dopamine excess (Howes
et al., 2012; Weinstein et al., 2017). Given the established role of phasic
dopamine signals in associative learning (Glimcher, 2011; Schultz, 2016;
Schultz et al., 1997), current theories posit that delusions result fromdis-
ruptions in associative learning caused by aberrant dopamine signaling
(Kapur, 2003). Such alterations, more typically framed in the context
of reinforcement learning (Maia and Frank, 2011; Sterzer et al., 2018),
are thought to drive unwarranted beliefs about the relevance or infor-
mativeness of neutral events and their bearing on causal inferences—
sometimes referred to as salience misattribution (Fletcher and Frith,
2009; Heinz et al., 2019; Kapur, 2003; Sterzer et al., 2018)—and can
thus be framed in the context of the type of inferential processes we
have discussed so far (Fletcher and Frith, 2009). This parallels the grow-
ing appreciation of a broader role of phasic dopamine signals in updating
of beliefs that go beyond reward expectations (Gershman and Uchida,
2019). Some empirical studies in delusional patients generally suggest
alterations in inferential processes. For instance, in one such study delu-
sional patients exhibited an attenuation of fMRI signals reflecting viola-
tion of expected outcomes acquired through associative learning in a
region of right lateral prefrontal cortex (Corlett et al., 2007). Similar re-
gions of anterior-lateral prefrontal cortex have been implicated in belief
updating in health (Edelson et al., 2014; Fleming et al., 2018) and in the
development of post-lesion delusions in a network-localization lesion
study (Darby et al., 2017). This suggests that prefrontal circuits relevant
to belief updating may be dysfunctional in delusional patients, but does
not implicate dopamine. A recent study in healthy individuals provided
more direct evidence for an involvement of dopamine in belief updating
during an inference task (Nour et al., 2018). Here, molecular-imaging
markers of striatal dopamine function correlated negatively with fMRI
belief-updating signals in the striatum. In turn, decreased belief updating
correlatedwith subclinical paranoid ideation, altogether providing feasi-
bility for a model whereby excess striatal dopamine impairs inferential
processes leading to delusional ideation. Despite many open questions,
this literature broadly suggests that the pathophysiology of delusions in-
volves mesostriatal dopamine excess and dysfunctions in prefrontal-
striatal circuits supporting associative learning and inferential processes.
Yet, the exact nature of the contributions from dopamine and different
elements of this associative circuitry to delusions remain obscure. And
so does their potential role in neurally instantiating prior weighting
and its hypothesized alterations.

Some fMRI studies in health speak to plausible neural
implementations of prior weighting. One study examined this by ma-
nipulating the consistency across sequential samples of evidence to in-
duce more or less reliable prior knowledge (Vilares et al., 2012). By
alsomanipulating and controlling the reliability of the likelihoodwithin
a trial, this work showed that fMRI activations in the striatum and in
orbitofrontal parts of the prefrontal cortex specifically scaled with the
reliability of prior knowledge. These activations correlated with behav-
ioral weighting of prior beliefs in response to the statistics of the envi-
ronment, suggesting a potential implementation of prior weighting in
frontostriatal circuits. Other lines of work also suggest that prefrontal
cortex and its interactions with parietal regions contribute to balancing
the relative weight of prior beliefs and sensory evidence (Chambon
et al., 2017; Flounders et al., 2019). Taken together, this suggests that
fronto-parietal-striatal circuits may control the weight of prior beliefs
in inference.

Electrophysiology and biophysical modeling have also shed light
into the neuronal and circuit-level implementation of inferential pro-
cesses similar to those we have discussed here. Many of these studies
have used the “weather prediction task” (Knowlton et al., 1996). Like
the beads task, the weather prediction task probes behaviors relevant
to inference on hidden states from a series of predictive samples
(e.g., prediction of weather conditions, like a rainy day, A). But unlike
the beads task, the likelihood associated with the samples of evidence
is not explicitly instructed and needs to be learned through trial and
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error. Distinct samples provide different levels of evidence strength or
likelihoods [e.g., P(x|A) > P(y|A) > P(z|A)] and participants need to
infer the hidden state by iteratively updating their beliefs as they ob-
serve a sequence combining several distinct samples [e.g., P(A|xyz)].
Single-unit recordings from nonhuman primates performing a two-
alternative-forced-choice version of this task revealed a neural sub-
strate for sequential belief updating, which consisted of signals
encoding the logit likelihood in a region of parietal association cortex
(Kira et al., 2015; Yang and Shadlen, 2007).

A biophysical neural-network model was developed to recapitulate
the neuronal and behavioral findings on this task and provide insights
into a plausible circuit-level implementation (Soltani and Wang,
2010). Importantly, this model learned the expected value of each sam-
ple via simple Hebbian synaptic-plasticity rules like those involved in
dopamine-dependent associative learning. As a result, synapses from
neurons selective to specific samples that project onto expected-value
neurons reflected the conditional probability of a state given that a spe-
cific sample appeared in the series [~PðAjxÞ]. Using this ‘naïve’ posterior
belief as conservative proxy for the sample likelihood [P(x|A)], this
model was able to infer hidden states. This biophysical model not only
suggests plausible circuit mechanisms for approximate Bayesian infer-
ence but also for variability in prior weighting. Even though themodel's
architecture was determined by biophysically realistic principles, its be-
havior exhibited deviations from normative Bayesian inference similar
to deviations in humans. Like humans, the model tended to under-
weight prior beliefs after a single sample and overweight priors in
other circumstances where human participants tend to do so (Gluck
and Bower, 1988; Soltani et al., 2016). Thismodeling thus suggests a po-
tential dopamine-dependent synaptic mechanism for non-normative
prior weighting in some forms of inference. Further modeling work is
warranted to examine this intriguing mechanism, particularly in the
context of the beads task and other online inference paradigms that
do not require trial-and-error learning.

Altogether, this work suggests potential neurobiological substrates
for changes in prior weighting that could implement the hypothesized
inferential alterations behind delusions. Although much work is still
needed in this area, one possibility is that dysregulated dopamine sig-
nals may disrupt inferential processes implemented in part in the stria-
tum. Converging evidence also points to an involvement of higher-order
prefrontal-parietal cortical regions that participate in inferential pro-
cesses in health. Other brain regions and neuromodulatory systems in-
volved in inference (e.g., norepinephrine) may be important candidates
requiring further investigation. So far, however, an underlying substrate
for prior overweighting in delusions remains unknown.

10. Conclusions and future directions

In this review, we have discussed inferential theories of delusions in
psychosis and the empirical evidence favoring certain models and chal-
lenging others. Implicit in the notion of these inferential theories is that
delusions result from narrow failure modes that should manifest as
quantitative deviations from inferential biases common in health, not
as broad deficits in neurocognition. Indeed, delusion severity tends to
be uncorrelatedwith overall performance on standard neuropsycholog-
ical tests (Baker et al., 2019; Keefe et al., 2006). And at least a subset of
patients with schizophrenia do not exhibit obvious neuropsychological
impairment, yet they still present with delusions and other symptoms
of psychosis (Goldstein et al., 2005; Palmer et al., 1997). Likely in that
group was John Nash, the Nobel laureate mathematician whose experi-
ences marked the beginning of our review. By all accounts a brilliant lo-
gician, and a seminal contributor to the subject of game theory, Nash
nonetheless suffered from severely disruptive and persistent delusions.
In a famous exchange (Nasar, 1998), a colleague asked him, “How could
you, amathematician, aman devoted to reason and logical proof [...] be-
lieve that extraterrestrials are sending you messages?”. To which Nash
replied, “Because the ideas I had about supernatural beings came to
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me the samewaymymathematical ideas did, so I took them seriously.”
As far as hewas concerned, he arrived at his conclusions through logical
reasoning; when he recovered, he even referred to his delusions in in-
ference terms as “delusional hypotheses” (Nash, 1994). While anec-
dotal, the selective inferential alterations implied by his case suggest
the need for similarly selective investigations to isolate themechanisms
of delusions in others.

Based on a critical review of the beads-task literature and theoretical
considerations (Figs. 1 and 3), we have presented an argument against
the utility of the classic beads task to isolate inferential processes. Our
reading of the literature suggests there is insufficient evidence to con-
clude that the jumping-to-conclusions bias indicates an inferential al-
teration relevant to delusions. Instead, we take the literature to
provide substantial support that this bias, and draws-to-decision behav-
ior in the classic beads task more generally, mainly reflects general cog-
nitive deficits or motivational factors rather than genuine alterations in
inferential processes. The argumentswe present caution against assum-
ing that a specific relationship between the jumping-to-conclusions bias
and clinical delusions has been established, or that such a presumed re-
lationship supports an account of clinical delusions characterized by the
overweighting of sensory evidence during inference. Further discussing
other lines of work thatmay favor this interpretation (e.g., in subclinical
populations or using other paradigms) is beyond the scope of this re-
view; we simply contend here that invoking the beads-task literature
in schizophrenia as direct support for this view is unwarranted.

We also describe enhanced approaches that show more promise in
isolating delusion-specific inferential alterations. We focused on de-
scribing our novel approach combining a controlled paradigm and com-
putational modeling, which has produced results pointing to a concrete
failure mode in inference that is selectively associated with delusions:
relative overweighting of prior beliefs. Through in silico simulations
based on a weighted Bayesianmodel, we went on to show that this sin-
gle failure mode can theoretically explain the two formal features that
define delusional beliefs, namely their high certainty and rigidity
(Fig. 2a–c). We also discussed possible extensions of this work based
on prescriptive models that cast prior weighting as an adaptive re-
sponse to external changes in the environment or internal constraints
in information processing, suggesting that maladaptation to these con-
ditions could explain the proposed failure mode. We then assessed the
neurobiological intersections between the pathophysiology of delusions
and the potential neural implementation of prior weighting during in-
ferential processes. Despite our limited understanding, the available
data support the biological plausibility of the proposed failure mode
and hint at possible implementations at the system and circuit levels.
Taking all this together, and drawing on early empirical support, we
propose prior overweighting in causal inference as a parsimonious,
and plausible, candidate failure mode for delusions. Future studies are
needed to confirm and further investigate this mechanism, including
its precise neural implementation. To this end, we offer several future
directions which we believe will be fruitful avenues for deepening our
neurocomputational understanding of delusions.

First, we believe there is room for further improvements in experi-
mental paradigms, which we take as perhaps the most critical aspect
of future work. Incentive compatibility is thought to contribute to the
high replicability of economics paradigms, encouraging the reporting
of true preferences and beliefs (Camerer, 1997; Camerer and Mobbs,
2017; Camerer et al., 2016). This feature may be critical for future
belief-elicitation paradigms trying to isolate inference in delusions, in
line with previous reports (van der Leer and McKay, 2014). Second,
we believe that the independent replication of key behavioral and
modeling results, comparisons across paradigms and models, and the
confirmation of specific associations with delusions will be necessary
to establish a solid foundation for further work (including
backtranslation, causal investigations, and forward translation towards
treatment development). Although our simulations indicate that the
proposed failure mode for delusions could parsimoniously explain the
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gradual development andmaintenance of delusional beliefs (Fig. 2a), an
important milestone will be to show whether this prior overweighting
is indeed associated with attenuated delusions in psychosis high-risk
populations, and whether the evolution of this computational pheno-
typepredicts clinical trajectories. If alterations in higher-level inferences
on hidden causal states are indeed confirmed to be specific to delusions,
and computationally distinct (albeit algorithmically similar) from
lower-level inferential alterations linked to hallucinations (Horga and
Abi-Dargham, 2019; Wengler et al., 2020), that would lend further
support for hierarchical frameworks with potential to provide an
integrative understanding of psychosis as a whole. Third, connecting
the proposed algorithmic mechanisms to underlying biological
implementations will lend further support for their feasibility and pro-
vide targets for interventions. Given that inputs from different hierar-
chical levels are thought to segregate into specific cortical layers
within a brain region (Lawrence et al., 2019; Stephan et al., 2019),
new layer-specific, high-resolution fMRI techniques (de Hollander
et al., 2021; Haarsma et al., 2020b) may be a promising avenue in this
regard (for further discussion, see Haarsma et al., 2020b).

Specific alterations in social inferences and social cognition have also
been proposed to underlie paranoid ideation and delusions (Bell et al.,
2020; Diaconescu et al., 2019; Diaconescu et al., 2020; Wellstein et al.,
2020), as well as schizophrenia more generally (Henco et al., 2020;
Patel et al., 2020). The link to delusions seems at odds with our findings
in Baker et al. (2019), including the strong correlation between para-
noid delusions and prior overweighting in a non-social, emotionally
neutral context, and with other recent findings in paranoid ideation
using a similarly neutral reversal-learning task (Reed et al., 2020). As
noted by Diaconescu et al.(2020; 2019), the open question here is
whether delusions result from basic inferential alterations thatmanifest
in generally ambiguous contexts (like social situations), or whether
they result specifically from alterations in social inference. Direct com-
parisons of social and non-social inference in delusional patients
would help settle this debate. Finally, once abnormalities in inferences
governing the form of delusional beliefs are identified, a comprehensive
model of delusions can and should aspire to address the thematic con-
tent of delusions. Despite the issues we have raised about the content
of delusions, focusing on the more consistent and tractable aspects of
their content may help elucidate the overrepresentation of delusional
themes with negative emotional valence (Appelbaum et al., 1999;
Sharot and Garrett, 2016; Woodward et al., 2014). Moving beyond the
specter of the jumping-to-conclusions bias and pursuing the goals set
out above may yet transform our understanding of delusions, and
bring us ever closer to a comprehensive, computational model of this
enigmatic symptom.
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