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The field of medicine is moving toward the use of biomarkers 
for the optimization of individualized care. This is a particular 
challenge for the field of psychiatry, in which diagnosis is based 
on a descriptive collection of behaviors without the availability 
of any objective test to stratify patients. Neuroimaging 
techniques such as molecular imaging with positron-emission 
tomography (PET) or structural and functional magnetic 
resonance imaging (MRI) provide an opportunity to bring 
psychiatry from an era of subjective descriptive classification 
into objective and tangible brain-based measures. Here we 
provide steps toward the development of robust, reliable and 
valid biomarkers. The success of such development is crucial 
because it will enable the field of psychiatry to move forward 
into the era of modern medicine.

The search for biomarkers—objective biological measures that can 
predict clinical outcomes—is consistent with the precision-medicine 
initiative, which gained official support from the White House in 
January 2015 (ref. 1). The approach, in which treatment and prevention  
for each person is carried out by taking into account the individual’s 
genes, environment and lifestyle, relies heavily on biomarkers (genetic 
or otherwise). This personalized ‘stratification’ approach is already 
revolutionizing cancer treatment, wherein novel drugs that target 
specific molecular-signaling pathways related to genetic mutations 
are currently under development and in testing2, thereby enabling 
treatments to be tailored to a patient’s genomic profile3. Treatment 
of some neurological disorders, such as epilepsy, has been carried out 
with some success by using similar strategies4. The application of pre-
cision medicine to psychiatry, however, is more challenging, because 
the path from genes to behaviors is influenced by a series of complex 
interactive links that have yet to be fully understood. Yet, psychiatric 
disorders are responsible for immense personal, social and financial 
burden. Medical costs in the USA alone were estimated at $57 billion 
in 2006 (ref. 5). More importantly, indirect costs resulting from lost 
earnings, in particular income lost owing to severe mental illness, has 
been estimated at $193 billion annually in the USA6. Biomarkers can 
help to reduce these staggering costs by enabling better and earlier 
detection and improved treatment.

Biomarkers are either diagnostic biomarkers that index a biological 
process associated with health or disease, or predictive biomarkers 

that reflect a process associated with the therapeutic response and are 
used in clinical stratification. Neuroimaging could satisfy both of these 
goals, because molecular imaging with PET or structural and func-
tional MRI can be used to measure phenotypic variations in molecular 
and cellular disease targets, or in specific brain circuits that are a 
unique representation of the interaction between genes and environ-
ment and are associated with specific alterations in behavior (Fig. 1),  
respectively. In the future, if these imaging measures demonstrate 
sufficient precision and reliability and can predict a clinical diagnosis 
or outcome, then they will become imaging biomarkers. Here we will 
discuss the main challenges of developing imaging biomarkers for 
psychiatric disorders and outline crucial benchmarks for the transla-
tion of neuroimaging findings into clinically useful biomarkers.

Challenges of developing biomarkers for psychiatric disorders
Lacking gold standards for psychiatric diagnoses. The first challenge  
is the definition of psychiatric disorders, which by standard  
nosology (as reflected in diagnostic manuals such as the Diagnostic 
and Statistical Manual of Mental Disorders (DSM) or the International 
Classification of Diseases (ICD)) is based on combinations of  
symptoms alone. In general, there are no existing gold standards that 
are based on biological tests such as postmortem histological or other 
objective tests that can be used for definitive validation of psychiatric 
diagnoses. The hope is that neuroimaging could provide biomarkers 
that would ultimately support any nosological diagnostic classification  
on the basis of objective tests, as in other areas of medicine.  
These might be part of a panel of tests that include nonimaging 
modalities, for example, genetic, peripheral blood-based or cogni-
tive tests. Here we focus on neuroimaging biomarkers as one subset 
of potential biomarkers.

A new classification scheme recently proposed by the US National 
Institute of Mental Health (NIMH) might aid in the development 
of neuroimaging biomarkers for psychiatric disorders. This is based 
on the Research Domain Criteria (RDoC) approach, a “new way of  
classifying mental disorders based on dimensions of observable 
behavior and neurobiological measures” (http://www.nimh.nih.
gov/research-priorities/rdoc/index.shtml). This approach is directly 
relevant to the search for biomarkers because it aims to identify 
valid elements, such as genes, molecules, cells, circuits, physiologi-
cal measures or behavior, that are associated with specific cognitive 
constructs across different systems. Neuroimaging (such as PET and 
single photon emission computed tomography (SPECT) radiotracer 
studies and magnetic resonance spectroscopy (MRS)) fits well within 
this approach because it can identify biomarkers related to the ‘cells’ 
and ‘circuits,’ although the results of these studies are not always 
direct or easily interpretable from a biological perspective. Diffusion 
tensor imaging (DTI) techniques can produce images of anatomical 
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pathways and circuits, whereas fMRI during rest or task performance 
affords characterization of functional circuits.

Although the RDoC is unlikely to replace current categorical clas-
sifications of mental illness in the short term, it can aid in the search 
for biomarkers. The RDoC approach might lead to the identification of 
neuroimaging markers of cognitive functions, such as reward learning 
or working memory, that might be impaired across psychiatric condi-
tions. For instance, we recently described distinct neural patterns of 
activation in the dorsolateral and medial prefrontal cortex during a 
working-memory task that were disrupted in patients with schizophre-
nia in proportion to reductions in working-memory capacity7. Distinct 
markers of a working-memory deficit in psychiatric disorders (includ-
ing but not limited to schizophrenia or any given DSM category) could 
represent different pathophysiological pathways that lead to a common 
behavioral deficit, and could thus help with the therapeutic selection 
of treatments that target specific pathways. This strategy is most use-
ful for cases in which the treatment goals are to improve the cognitive 
dysfunction per se, rather than to treat the disorder as a whole.

Identification of pathological features. The second major challenge 
for the identification of imaging biomarkers for psychiatric disease is 
that many of the pathological features of psychiatric disease may be 
subtle and hence elusive to neuroimaging. It might be that the brains 
of individuals with psychiatric disorders appear typical at examina-
tion, but exhibit pathological phenotypes when ‘at work,’ which makes 
task-based assessment or other challenge paradigms an essential tool 
for revealing the characteristic patterns that could lead to the develop-
ment of biomarkers.

The discovery of biomarkers is also limited by the availability 
of imaging tools, including the development of novel tracers for 
uncharted molecular targets. For instance, imaging of neuroinflam-
mation became possible only recently, following the development of 
specific tracers for inflammation, after which reports of changes in 
these markers in major depressive disorder (MDD)8 and schizophre-
nia9,10 (but see ref. 11) rapidly started to emerge in the literature.

However, the paucity of replicated imaging findings is an impor-
tant issue to consider here. One explanation is that attempts at  
replication are seldom the focus of imaging studies. The field rewards 
novelty over replication. Second, the neuroimaging field remains in 

the mechanistic discovery phase, wherein more effort is focused on 
uncovering alterations in imaging measures than on pursuing prom-
ising biomarkers, and so studies are not typically designed for the 
latter. Finally, a lack of statistical power is often an issue. To generate 
a larger pool of potential biomarkers, it may be essential that the need 
for replication using identical paradigms in well-powered studies be 
accepted as the norm.

In general, the field of psychiatric research has few potential 
biomarkers, and a more systematic search is needed to uncover 
additional candidates. This could emerge from initiatives similar to 
the precision-medicine study of 1,000 volunteers1. Systematic imag-
ing of a critical number of patients with a specific DSM diagnosis 
with several imaging modalities across sites, for instance, could 
be a promising strategy to spur the search for and development of  
imaging biomarkers.

Validation of biomarkers. A third challenge of developing imaging 
biomarkers for psychiatric disease relates to the validation of biomar-
kers, which conventionally entails the comparison of a prediction 
with an actual outcome, be it diagnostic, histologic or therapeutic. 
Validation requires correlative analyses of in vivo imaging measures 
against in vitro measures such as postmortem histological examina-
tions of brain tissue; although, as discussed above, the latter is typically 
unavailable for psychiatric illnesses. Longitudinal follow-up—which in 
psychiatry tends to stand in for an objective gold standard of outcome, 
be it diagnostic, therapeutic or functional—may be needed to establish 
a final diagnosis or observed clinical outcome that can be compared 
to the biomarker prediction. Moreover, for a biomarker to be useful 
for clinical practice, it needs to have an acceptable level of sensitivity, 
specificity and predictive value (see Box 1), to be easily accessible and 
practically feasible, easily quantifiable and cost effective.

Standardization of neuroimaging methods
To advance the discovery and the validation of imaging biomarkers, 
the field needs to adopt methods that are simple, reliable and easy 
to implement. Regardless of the specific method used, a database of 
healthy individuals who do not have psychiatric disorders may be first 
collected from each scanner to provide normative values and derive 
thresholds that separate health from illness; these thresholds can be 
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Figure 1  Genetic and imaging biomarkers. Imaging biomarkers can be cell- or circuit-based, imaged with MRI or PET modalities and represent 
intermediate biomarkers between genes and various domains of behavior. Adapted, with permission, from Figure 1 in Birnbaum, R. & Weinberger, D.R. 
Functional neuroimaging and schizophrenia: a view towards effective connectivity modeling and polygenic risk. Dialogues Clin Neurosci. 15, 279–289 
(2013). (Dialogues in Clinical Neuroscience, © Institut La Conférence Hippocrate, Suresnes, France.)
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used for new scans to assign a likelihood of a diagnosis or outcome. 
To optimize the signal-to-noise ratios on each scanner and test the 
reproducibility across sites, this approach can then be implemented 
across sites and tested with the aid of imaging phantoms, which are 
models of brain anatomy or chemical composition, as well as traveling 
healthy controls for cross-site comparison purposes. To ensure stand-
ardized procedures, there should be a required protocol that includes 
performance of quality-assurance tests on the scanner before data 
acquisition is carried out, as well as specific analysis software for 
data processing. Specific protocols for subject preparation might be 
required—for instance, fasting for a certain period of time before 
scanning. The final data sets may be de-identified and shared across 
sites for centralized analyses to confirm measurements obtained 
by different raters or sites, an operation that may be implemented  
on a regular basis. See http://adni.loni.usc.edu/methods/pet-analysis/
pre-processing/ for an illustration of the steps taken in the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) study to provide homoge-
neous data acquisition and analysis across sites. Finally, biomarker 
development might require studies designed a priori as large-scale, 
multisite studies with a coordinated analysis plan that includes inde-
pendent validation, rather than post hoc sharing of data sets acquired 
from multiple studies with differing goals.

Molecular imaging (PET) methods. Molecular PET imaging con-
sists of the use of radiotracers to image specific targets in the brain 
by administering these radiotracers to subjects and collecting the 
radioactive signal produced by the radiotracers with a PET scanner. 
Radiotracers are designed to bind to target molecules such as neu-
roreceptors, re-uptake transporters or intracellular enzymes or act 
as substrates for the metabolic pathways of endogenous substances. 
The radiotracer is injected into a subject lying in the PET scanner. 
The concentration of the radiotracer in local brain volumes is then 
inferred and statistically fitted to mathematical models of the observed 
biological processes. Parameter estimates can then be derived to char-
acterize the processes quantitatively. The imaging data can range from 
single, static snapshots of the tracer distribution, obtained from 10 
to 20 min of scanning, to sequential dynamic images that record the 
kinetic profile of the tracer over a course of hours. Some mathematical 

models of the imaging data (comprehensive models) require the draw-
ing of blood samples from the subject to estimate the radioactivity 
that relates only to the parent tracer crossing the blood–brain barrier 
(BBB) over time. For a more comprehensive discussion, see ref. 12.

In the case of PET biomarker development, ideally, a simplified 
bloodless method with a short scanning period—under 30 min—
would first be validated against a gold-standard method on the basis 
of a comprehensive model that includes arterial sampling and full 
kinetic analysis. Bloodless methods have advantages because they 
bypass many sources of error and noise that relate to plasma and 
metabolite analysis needed for comprehensive models and forgo 
the need for expensive equipment to measure these. However, a key 
prerequisite for bloodless radiotracer methods is the presence of a 
reference brain region that is devoid of receptors or other targets of 
interest, which serves as a ‘surrogate measure’ of radiotracer avail-
ability. Selectivity of the tracer in the region of interest for the specific 
target and the feasibility of identifying a region with precise contours 
by visual inspection or the application of anatomical masks would also 
be an ideal scenario for molecular imaging of biomarkers.

Functional and structural MRI methods. MRI refers to a family of 
imaging techniques that use magnetic fields and radio waves to excite 
hydrogen atoms in water-containing tissues and read out signals that 
these atoms emit back, depending on the magnetic properties of the 
tissue. The changes in the signals are a result of tissue characteristics 
(such as proton density or changes in magnetic susceptibility that result 
from changes in blood oxygenation), and they allow for interpretations 
about brain morphology, integrity and neural activity. MRI techniques 
are commonly noninvasive and do not involve radioactivity. Structural 
MRI provides an anatomical image that delineates different tissues 
(for example, gray matter, white matter and cerebrospinal fluid) and 
brain structures. Functional MRI measures fluctuations in blood flow 
or oxygen level at rest or during a challenge, cognitive (for example, a 
memory test) or otherwise (for example, a drug challenge).

Validation steps to ensure that MRI techniques measure the 
intended anatomical or functional features are always required. These 
may be as varied as prediction of neuronal counts from structural 
techniques or capturing of individual performance or preferences 

Box 1  Definition of relevant terms for biomarker development 
Sensitivity (true positive rate) refers to the proportion of individuals who test positive among those who have the outcome of interest  
(i.e., test +/outcome +).

Specificity (true negative rate) refers to the proportion of individuals who test negative among those who do not have the outcome of 
interest (i.e., test −/outcome −).

Positive predictive value (PPV) refers to the proportion of individuals who have the outcome of interest among those who tested positive 
(i.e., outcome +/test +).

Negative predictive value (NPV) refers to the proportion of individuals who do not have the outcome of interest among those who tested 
negative (i.e., outcome −/test−).

Internal validity refers to the ability to claim that the measure of interest in a study measures the intended feature in an unbiased way 
and without the influence of confounding third variables (for example, that brain volumes are related to a particular diagnosis rather than 
to the treatment associated with that diagnosis).

External validity refers to the ability to extrapolate the results of a study to the general population of interest (that is, to real-life clinical 
situations). Demonstrating external validity typically requires the replication of study results in naturalistic samples independent from 
the original study sample.

Reliability refers to the consistency of a measure, either with itself when administered in several occasions (test–retest reliability) or in 
the appraisals of this measure across several raters (inter-rater reliability). Note that a reliable measure could still be invalid, for instance, 
when measuring consistently an unintended feature (for example, treatment) associated with the intended one (for example, diagnosis).
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from a task-based functional technique. Regardless of the method, 
reliability is crucial for standardization. New initiatives of collabora-
tion across academia and the pharmaceutical industry to accelerate  
the development of new therapeutics for severe mental illness, such 
as the NEWMEDS consortium, have emphasized the development  
of reliable fMRI paradigms13. Fully automated, standardized  
methods using a unified software platform are typically easier to 
implement across different sites, although manual methods might 
be better suited for certain purposes. Although standardized pipe-
lines for preprocessing of MRI data exist and continue to become 
increasingly sophisticated as improved sequences are developed (for 
example, the recent advances linked to the Human Connectome 
Project)14, no single pipeline is likely to become a one-size-fits-all 
approach that covers all needs for biomarker development. Instead, 
any given biomarker should include a detailed protocol that specifies 
everything from sequence parameters and data-collection protocol to 
preprocessing protocol and analysis to derive robust outcome meas-
ures. Postprocessing methods to minimize motion artifacts are also 
crucial, especially for resting-state fMRI, whereby design-predicted 
time-courses associated with task manipulations are not available for 
explicitly modeling signal dynamics.

Practical considerations. Imaging biomarkers require the availability 
of well-functioning imaging centers and could cost up to several thou-
sand dollars per scan. Currently, an MRI scan costs around $600 per 
hour in academic centers and might be $1,000 per hour in commercial 
centers in the United States of America. PET scans range from $3,000 
to $5,000 per scan (including radiotracer production and scanning 
costs), although this varies across centers. Although implementation 
feasibility is a relevant concern, it is hard to predict the price and avail-
ability of neuroimaging procedures in the near future. For instance, 
MRI scanning technologies are becoming accessible at most medical 
centers. Furthermore, the rapid development of technology suggests 
that automated analysis methods that might seem to be an infeasible 
addition to clinical practice today could soon be available through 
internet-based offsite systems. Thus, the field should focus on the 
development of robust biomarkers, even if their application is limited 
initially to a handful of specialized centers, because these might give 
way to a second generation of more affordable and accessible biomar-
kers that rely on new technological developments.

Finally, cost effectiveness, rather than cost, should be the priority. 
Cost effectiveness will be determined by the clinical usefulness of the 
biomarker in avoiding additional expenses related to misdiagnosis,  
unnecessary procedures or hospitalizations and other disease- 
related burden.

Current potential biomarkers in psychiatry
Reports of neural abnormalities in psychiatric disorders abound in 
the clinical neuroimaging literature, a number of which have been 
replicated by independent research groups. Typically, these neural 
abnormalities consist of statistically significant deviations from  
normality in a given neural feature or phenotype. For instance, an 
average thinning of the cortical mantle in the prefrontal cortex, a part 
of the brain associated with decision-making, self-control and other 
higher-order cognitive functions, was reported in a group of adult 
patients with MDD, as compared to a sociodemographically matched 
control group of healthy individuals15. Such a finding means that 
patients with MDD tend to display cortical thinning of the prefrontal 
cortex. However, in and of itself, this finding might be completely 
uninformative regarding clinical outcomes of individual patients. 

A neural finding in a clinical population becomes a true biomarker 
only if it can be used as an accurate proxy for some clinically relevant 
outcome, such as diagnosis, prognosis or treatment response, i.e., 
if it has sufficient clinical predictive value. The majority of clinical 
neuroimaging reports of neural abnormalities in clinical populations 
do not assess predictive value, and as a consequence, very few of the 
replicable abnormalities in psychiatric conditions can be regarded as 
actual biomarkers with potential clinical utility.

That said, the neuroimaging literature has provided important 
insights into the pathophysiology of mental disorders. Meta-analyses 
of patients with schizophrenia provide evidence that supports a patho-
logical increase in dopamine storage and release capacity in presynaptic 
dopamine neurons16, an increase that is correlated with the severity of 
psychotic symptoms. Furthermore, this was shown to predict response 
to treatment of psychotic symptoms, a finding replicated by examin-
ing responders in comparison to nonresponders17. This example illus-
trates a potential approach for screening patients who could benefit 
from drugs that target the dopaminergic system. This approach might 
become useful in the future once we better understand the biology and 
have treatments that target nondopaminergic aspects of psychosis.

Other replicated findings from patients with this disorder include an 
increase in blood volume in the cornus ammonis region 1 (CA1 region 
of the hippocampus18,19), a key region involved in memory, which has 
been shown to predict conversion to schizophrenia and could thus 
potentially serve as an indicator of risk. Studies of schizophrenia have 
also revealed deficient increases in hemodynamic responses during 
reward anticipation in the ventral striatum20, which may be relevant 
for some symptoms of the disorder, such as a lack of motivation. 
In MDD, treatment resistance has been linked to increased blood 
flow in the subgenual anterior cingulate21,22, a neural phenotype that 
has been targeted using deep brain stimulation (DBS), with some 
promising results23. Among other findings, dopamine-receptor avail-
ability in the striatum and gray matter volume in the ventromedial 
prefrontal cortex, both of which are regions involved in learning and 
decision-making, are reduced in patients with drug addiction24–27, 
as compared to healthy individuals, and may predict treatment  
failure28. Patients with obsessive-compulsive disorder (OCD) consist-
ently show increased volume of the striatum29. Patients with various 
anxiety disorders display increased hemodynamic responsiveness of 
the amygdala to negative emotional stimuli, whereas patients with post-
traumatic stress disorder show a specific decrease of activity in various 
prefrontal regions associated with the regulation of emotion30.

Thus, progress in understanding the neurobiological mechanisms 
of psychiatric illness afforded by modern neuroimaging techniques 
is unquestionable and its potential ever growing. However, we 
would argue that none of the aforementioned findings should yet be  
considered a biomarker proper, and that mechanistic and biomarker-
oriented research should not be considered as interchangeable lines 
of research. Although, ideally, biomarkers would derive from neuro-
biologically and mechanistically interpretable findings, this might 
not always be necessary at first, as long as biomarkers are rigorously 
validated by following the steps discussed below (to draw a parallel 
with drug development, serendipitously discovered drugs with proven 
clinical effectiveness may be incorporated into clinical practice before 
their biological mechanisms are fully understood).

A framework for the development of neuroimaging biomarkers 
in psychiatry
The ultimate goal of developing neuroimaging biomarkers is to aid 
clinical practice in real-world settings. A hypothetical example would 
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be using a structural MRI scan for a patient with OCD to decide 
whether to initiate pharmacotherapy with fluvoxamine or cognitive-
behavioral therapy as a first line of treatment—an important decision, 
given that prompt treatment with the most effective and best- 
tolerated option can carry substantial sociopersonal benefits and 
reduce morbi-mortality. In this example, the treatment decision 
would not necessarily be based on a subjective reading by a trained 
radiologist, but it could instead rely on a quantitative readout from a 
computer algorithm that exploits multiple scan features (for example, 
gray matter volumes in amygdala, orbitofrontal cortex and striatum) 
to maximize its predictive accuracy.

Identifying a clinically relevant question. Similarly to the widely 
accepted standards for drug discovery, the development of clinically 
useful neuroimaging biomarkers in psychiatry will probably require 
multiple steps (Fig. 2). A first crucial step is to define a clinically 
relevant question that, if addressed, could potentially lead to improve-
ments in patients’ long-term functioning and quality of life. That 
is, biomarkers should be developed for clinical tests that are worth  
ordering by clinicians by virtue of their ability to change clinical prac-
tice—biomarkers eventually need to translate into actionable tests31. 
Examples of this would be prediction of conversion to full-blown 
psychosis in individuals at clinical high risk (such as those who have 
family history of psychotic disorders and present with attenuated  
psychotic symptoms, such as unusual beliefs), which would be  
important in eventually developing prevention strategies for those 
individuals with the highest conversion risk while sparing those with 
lower conversion risk to avoid unnecessary treatment side effects, and 
virtually all questions related to treatment selection. Whereas relevant 
questions will probably be related to clinical outcome, differential 
diagnosis and treatment selection, diagnosis of a major psychiatric 
disorder such as schizophrenia or MDD (versus health) might be 
less relevant in a clinical setting, where treatment-seeking patients 
presenting with disruptive psychotic or depressive symptoms will, by 
definition, be ill. By the same token, differential diagnosis of treated 
patients, rather than of untreated patients, upon their clinical presen-
tation is less likely to be a priority for biomarker development.

Few reports on imaging biomarkers under development focus on 
clinically relevant questions. Among those, a landmark MRI study 
aimed to predict longitudinal clinical outcome in patients at high clin-
ical risk for psychosis32. In this study, a machine-learning algorithm 
using morphometric gray matter features from a structural MRI scan 
was able to predict conversion to psychotic disorders with positive 
and negative predictive values over 80%. This and other hypotheti-
cal examples, such as the stratification of patients who have a certain 
cognitive-dysfunction profile or receiving add-on cognitive training 
independently of diagnosis and concomitant treatments, make it 
apparent that clinical relevance does not require respecting current 
diagnostic boundaries, such as those based on the DSM diagnostic 
categories. Furthermore, the lack of histological gold standards is 
entirely circumvented by focusing on pragmatic questions such as 
clinical outcome and treatment stratification, the validity of which 
can be assessed via longitudinal designs.

To have potential clinical utility, biomarkers will need to demon-
strate, even at early stages of development, that they provide use-
ful information over and above clinical and sociodemographic data 
that are collected routinely in clinics. For instance, a combination of  
clinical factors improves prediction of conversion to psychosis in  
individuals at clinical high risk with approximately 80% positive pre-
dictive value33. This finding further raises the bar for new biomarkers  

in this area, which would ideally need to demonstrate improved  
predictive power when added to such a combination of clinical  
factors, or at least show that the variance in the predicted outcome 
explained by the biomarker does not overlap with other clinical mark-
ers that are more easily accessible and just as reliable. A cautionary 
tale on this issue came from the ADHD-200 Global Competition: 
although the aim of this competition was to develop imaging  
biomarkers for diagnostic classification of attention-deficit hyper-
activity disorder (ADHD) using a large functional and structural 
MRI data set, the best classification approach used solely personal 
characteristics (such as age, sex, handedness and IQ) and none of the 
available imaging data34.

Ensuring the biomarker measures the intended biological  
process. The second step would involve ensuring that the biomarker 
is operating on brain-based phenotypes directly associated with the 
physiological mechanisms of interest, rather than on epiphenom-
enal consequences of the illness or its treatment35. In other words, 
biomarkers need to show internal validity (Box 1). For example, if a 
biomarker can accurately predict diagnosis of bipolar disorder versus 
unipolar depression by capitalizing on the neuroplastic changes asso-
ciated with lithium—a first-line treatment for bipolar disorder—then 
its predictions would be equivocal when used to aid with differential 
diagnosis in an untreated patient with an unclear clinical presenta-
tion. Some evidence indeed suggests that classification algorithms are 
sensitive to treatment effects36.

Demonstrating the biomarker’s predictive value. The third step 
required to validate a biomarker externally is to show that it has suf-
ficiently high predictive value to be clinically useful, beyond simple 
demonstration of statistically significant effects (Fig. 3). Whereas  
statistically significant differences in the distribution of a biological 
feature between health and disease mean that the probability of find-
ing a difference of the observed size by chance is unlikely (for example, 
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Figure 2  Steps for biomarker discovery. Left, flowchart outlining 
steps needed for biomarker development. Right, examples of potential 
biomarkers (see text for other examples) and goals associated with each 
step. CA1, cornus ammonis region (region I) of hippocampus. CBV, 
cerebral blood volume.
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less than 5%), the amount of overlap between the groups is clinically 
more relevant because it determines the percentage of individuals 
who are actually ill or healthy when they are classified as such—the 
positive and negative predictive value, respectively (Box 1).

Here, however, how high a ‘sufficiently high’ predictive value is depends 
on the specific clinical question; although a biomarker would typically be 
required to have positive and negative predictive values greater than 90%, 
in some scenarios in which the standard of care is based on an arbitrary 
decision between two comparable alternatives, a modestly predictive test 
might be clinically impactful31. This third step will necessarily involve 
external cross-validation in an independent clinical sample of adequate 
size. Specifically, this validation sample (or test set) needs to be fully 
independent from the discovery sample (or training set) used to develop 
the biomarker algorithm. This is necessary, particularly with multivariate 
classifiers, to avoid overfitting of the data on which the algorithm was 
trained and poor performance of this algorithm on new data (such as 
data from new patients in clinical settings where the established algo-
rithms need to be most accurate), a risk that can also be decreased by 
using larger sample sizes for a given number of variables37.

Existing proof-of-concept studies suggest that moderate-to-high 
predictive value for diagnostic classification in independent samples, 
not only between patients and healthy controls, but also between  
different patient groups (for example, schizophrenia versus bipolar 
disorder), can be achieved on the basis of morphometric features 
derived from structural MRI scans using supervised and semi- 
supervised machine-learning methods38,39 (Fig. 3, for an example of 
a multivariate classification based on machine learning). We propose 
that only once a potential biomarker has been externally validated in 
an independent sample should it be considered as a biomarker.

Demonstration of clinical utility. Finally, a fourth step will involve 
longitudinal designs in which biomarkers are actually put to a defini-
tive test to establish their clinical utility. Longitudinal designs allow 
for the establishment of a final diagnosis for patients with unclear 
presentation to confirm biomarker-based diagnoses. They can also 
be used to test whether biomarker-based treatment selection in ran-
domized controlled trial (RCT) designs is superior to the assignment 
of treatment according to standard clinical practice. At that stage, the 
number needed to treat (NNT) or number needed to assess (NNA), 
which represent the number of individuals that would need to undergo 
a certain procedure to benefit one individual, can be useful in synthe-
sizing the potential utility of the biomarker. Only at that point will a 
clinically useful biomarker (for example, one with low NNT or NNA) 
be able to make its way into real-world clinical settings. Even after this 
bench-to-bedside leap, however, studies in real-world settings will be 
required to definitively establish the utility and cost-effectiveness of 
biomarkers in the real world, for instance, by demonstrating that their 
use is associated with a reduction in morbidity and improvement in 
quality of life for the general population.

Future directions for biomarker development in psychiatry
The long-awaited arrival of neuroimaging-based biomarkers for 
psychiatric disorders would represent a historic paradigm shift in 
the biomedical sciences, one with several fundamental ramifica-
tions extending from the social perception of mental illness to the 
modernization of psychiatric practice. Thus, the development of 
clinically useful biomarkers should be a top priority of contemporary  
mental-health research, as the strategic objectives laid out by the 
NIMH already reflect (http://www.nimh.nih.gov/about/strategic-
planning-reports/strategic-objective-2.shtml). In addition, this is  

congruent with the need recognized by the Food and Drug 
Administration (FDA) and the European Medical Agency (EMA) for 
biomarkers that predict clinical response or the emergence of side 
effects in drug trials40. The sheer scale of biomarker development 
calls for collaborative efforts across research sites and will require 
support by appropriate funding mechanisms designed a priori for this 
purpose. Along these lines, although publicly available databases of 
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Figure 3  Statistically significant findings versus clinically useful 
biomarkers. (a–c) Histograms reflecting the distributions of a simulated 
imaging measure (x axis) among two groups (in this example, patients  
in red and healthy controls in blue). Illness prevalence of 50% (with  
effect sizes of 1 and 2, respectively) (a,b), and distributions corresponding 
to a prevalence of 25% (with an effect size of 2) (c). Positive and  
negative predictive values (PPV and NPV, respectively) are reported.  
There is substantial overlap of groups in a, with moderate PPV and  
NPV despite a large effect size of 1. There is decreased overlap, with an 
even larger effect size of 2, in b and c, but PPV and NPV depend on the 
prevalence of the predicted outcome. (d) A scatterplot of distributions  
of two simulated imaging measures (x and y axes) with marginal 
histograms corresponding to each of the two univariate distributions.  
A multivariate classifier (in this case, a linear support vector machine)  
was trained to maximally separate the two groups by simultaneously  
using both imaging measures. Whereas the univariate distributions for 
both measures overlap substantially between groups, the multivariate 
classifier is able to find a boundary that perfectly separates these groups. 
(e,f) PPV (e) and NPV (f) for simulated examples wherein the effect size 
and illness prevalence were varied systematically. Of note, whereas effect 
size has a monotonic effect on PPV and NPV, prevalence modifies the 
midpoint and slope of the sigmoidal relationship between effect size  
and these measures.
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imaging data might be a helpful start for method development and 
proof-of-concept studies, clinical samples for biomarker develop-
ment should, first and foremost, be targeted to particular questions 
of clinical relevance (for example, a large data set of patients with 
chronic, treated schizophrenia would be unhelpful for developing a 
biomarker aimed at treatment selection or differential diagnosis for 
first psychotic episodes).

Biomarker development should employ a cost-effective platform 
that strikes a balance between hypothesis-driven development, aimed 
at exploiting well-replicated imaging phenotypes with the potential to 
result in useful biomarkers, and purely data-driven but nonetheless 
powerful approaches aimed at ‘blindly’ exploring multimodal data 
sets. The latter might include panels of multimodal imaging, genetic, 
clinical and other data. One timely example of the former is the emerg-
ing field of imaging neuroinflammation, which offers the prospect 
of a clinically useful and therapeutically actionable biomarker that 
might eventually prompt targeted immuno-modulatory treatments 
that cut across conventional diagnostic categories. Although specific 
neuroimaging modalities (such as resting-state versus task-based 
fMRI, or fMRI versus PET measures of blood flow) might be more 
feasible and accessible in general, and although some neurobiological 
processes (such as the dopamine system) might be better understood 
than others, biomarker discovery should be tailored to the clinical 
question under examination rather than abiding by generic prescrip-
tions; it should exploit reliable leads from previous research while, 
at least initially, acknowledging gaps in knowledge and the need for 
further discovery.

To achieve useful biomarkers, we need mechanisms by which an 
expert consensus can be quickly reached in terms of optimal tracers, 
optimal cellular targets and quantification methods, and by which 
multisite testing across diagnostic groups is expedited. An example of 
the latter could be the use of multivariate tools that combine multiple 
measures within a modality (for example, combining PET measures 
of enhanced striatal dopamine release, a well-replicated marker of 
psychosis, and of extrastriatal dopamine release deficit41 in a single 
classifier to increase the power to detect cases that have abnormal 
dopamine transmission) or across imaging modalities and nonimag-
ing data, including, but not limited to, clinical, sociodemographic, 
genetic and biochemical data.

Once clinically targeted data sets of biomarker panels are collected, 
open scientific competitions could be a way to accelerate selection of 
the best performing algorithms34. Nationwide initiatives organized 
by the NIH, modeled after pioneering large-scale projects such as 
the North American Prodrome Longitudinal Study (NAPLS)42, or 
international collaborative projects will thus probably be needed to 
spur the development of targeted biomarkers that have real potential 
to revolutionize psychiatric practice.
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